A high-accuracy and lightweight detector based on a graph convolution network for strip surface defect detection

卷积(计算机科学) 计算机科学 可分离空间 探测器 人工智能 模式识别(心理学) 图形 特征(语言学) 还原(数学) 曲面(拓扑) 计算机视觉 算法 数学 人工神经网络 理论计算机科学 几何学 电信 数学分析 哲学 语言学
作者
Guan-Qiang Wang,Chizhou Zhang,Ming-Song Chen,Y.C. Lin,Xian-Hua Tan,Yuxin Kang,Wang Qiu,Weidong Zeng,Weiwei Zhao
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102280-102280 被引量:34
标识
DOI:10.1016/j.aei.2023.102280
摘要

For strip surface defect detection, the key is to achieve reliable detection results with high detection speed. This paper mainly focuses on the ability to distinguish defects with similar optical characteristics, and the balance between detection accuracy and speed. Firstly, the dataset with 2020 pictures containing 6 types of defects was established by the figures inspected in a rolled titanium strip production line. Then, a novel detection model named Yolo-SAGC was proposed by applying two strategies to the fast response Yolo-v5 model. One is to improve the feature recognition capability by combining self-attention and graphic convolution in the head module. The other is to make a thorough slim of the whole network architecture by using slim modules combined with depth-wise separable convolution (i.e., DWconv). Finally, the advancement of this novel detection model was verified by the self-established database. The results demonstrate a significant reduction in cases where detection is missed for the 6 types of defects, dropping from 32.75% to 6.67% when the two strategies are implemented. Notably, the most difficult-to-detect label "Pit" defect shows an 11.9% improvement in average precision with the introduction of self-attentional graphic convolution. Similarly, the densely distributed small target "Little_lightspot" exhibits a 5.0% increase in average precision when DWconv is applied. Furthermore, the mAP@0.5 of Yolo-SAGC is comparable to that of Yolo-v8, while the model parameters are decreased by 48.7% and FPS is increased by 3. These phenomena show the great potential of Yolo-SAGC in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
情怀应助复杂尔蓝采纳,获得10
3秒前
cucu发布了新的文献求助30
4秒前
科研通AI5应助sss采纳,获得30
4秒前
4秒前
1551完成签到,获得积分10
4秒前
失眠奥特曼完成签到,获得积分10
6秒前
李佳完成签到,获得积分20
6秒前
某某完成签到 ,获得积分10
8秒前
wwwww完成签到,获得积分10
9秒前
9秒前
10秒前
22完成签到,获得积分10
10秒前
太叔夜南完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
敢为天下先完成签到,获得积分10
14秒前
Y垚发布了新的文献求助10
15秒前
所所应助嘟嘟嘟嘟嘟采纳,获得10
16秒前
凡仔发布了新的文献求助10
17秒前
sss发布了新的文献求助30
17秒前
泉眼完成签到 ,获得积分10
18秒前
王吉萍完成签到,获得积分10
19秒前
20秒前
浮游应助跳跃的谷丝采纳,获得10
23秒前
23秒前
加肥猫完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助30
24秒前
云不归发布了新的文献求助10
25秒前
Lucas应助Gavin啥也不会采纳,获得10
25秒前
万能图书馆应助guohuameike采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4971362
求助须知:如何正确求助?哪些是违规求助? 4227598
关于积分的说明 13166997
捐赠科研通 4015580
什么是DOI,文献DOI怎么找? 2197427
邀请新用户注册赠送积分活动 1210345
关于科研通互助平台的介绍 1124798