已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A high-accuracy and lightweight detector based on a graph convolution network for strip surface defect detection

卷积(计算机科学) 计算机科学 可分离空间 探测器 人工智能 模式识别(心理学) 图形 特征(语言学) 还原(数学) 曲面(拓扑) 计算机视觉 算法 数学 人工神经网络 理论计算机科学 几何学 数学分析 电信 语言学 哲学
作者
Guan-Qiang Wang,Chizhou Zhang,Ming-Song Chen,Y.C. Lin,Xian-Hua Tan,Yuxin Kang,Wang Qiu,Weidong Zeng,Weiwei Zhao
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102280-102280 被引量:34
标识
DOI:10.1016/j.aei.2023.102280
摘要

For strip surface defect detection, the key is to achieve reliable detection results with high detection speed. This paper mainly focuses on the ability to distinguish defects with similar optical characteristics, and the balance between detection accuracy and speed. Firstly, the dataset with 2020 pictures containing 6 types of defects was established by the figures inspected in a rolled titanium strip production line. Then, a novel detection model named Yolo-SAGC was proposed by applying two strategies to the fast response Yolo-v5 model. One is to improve the feature recognition capability by combining self-attention and graphic convolution in the head module. The other is to make a thorough slim of the whole network architecture by using slim modules combined with depth-wise separable convolution (i.e., DWconv). Finally, the advancement of this novel detection model was verified by the self-established database. The results demonstrate a significant reduction in cases where detection is missed for the 6 types of defects, dropping from 32.75% to 6.67% when the two strategies are implemented. Notably, the most difficult-to-detect label "Pit" defect shows an 11.9% improvement in average precision with the introduction of self-attentional graphic convolution. Similarly, the densely distributed small target "Little_lightspot" exhibits a 5.0% increase in average precision when DWconv is applied. Furthermore, the mAP@0.5 of Yolo-SAGC is comparable to that of Yolo-v8, while the model parameters are decreased by 48.7% and FPS is increased by 3. These phenomena show the great potential of Yolo-SAGC in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟柳画桥发布了新的文献求助10
1秒前
科研通AI5应助Carrots采纳,获得10
4秒前
4秒前
积极的蘑菇完成签到 ,获得积分10
6秒前
神勇访云完成签到,获得积分10
8秒前
坚强的紫菜完成签到 ,获得积分10
8秒前
9秒前
a焦发布了新的文献求助10
14秒前
斯文败类应助熬夜薯条采纳,获得10
15秒前
15秒前
李健的小迷弟应助Yu采纳,获得10
19秒前
科研通AI5应助Carrots采纳,获得10
21秒前
斯文败类应助a焦采纳,获得10
21秒前
淡然的舞仙完成签到,获得积分10
22秒前
可爱的函函应助hqc采纳,获得10
22秒前
酷波er应助芝麻汤圆采纳,获得10
23秒前
24秒前
24秒前
28秒前
wxh发布了新的文献求助30
28秒前
活力的采枫完成签到 ,获得积分10
30秒前
30秒前
chenhoe1212完成签到 ,获得积分10
32秒前
阿南完成签到 ,获得积分10
36秒前
hqc发布了新的文献求助10
37秒前
39秒前
40秒前
Owen应助张emo采纳,获得10
40秒前
yu发布了新的文献求助10
44秒前
46秒前
辛勤的喉完成签到,获得积分10
47秒前
悦耳的子默完成签到 ,获得积分10
48秒前
51秒前
51秒前
远方发布了新的文献求助10
58秒前
小二郎应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
NexusExplorer应助科研通管家采纳,获得50
59秒前
59秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784713
求助须知:如何正确求助?哪些是违规求助? 3329909
关于积分的说明 10243697
捐赠科研通 3045255
什么是DOI,文献DOI怎么找? 1671603
邀请新用户注册赠送积分活动 800484
科研通“疑难数据库(出版商)”最低求助积分说明 759416