亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automation-augmentation paradox in organizational artificial intelligence technology deployment capabilities; an empirical investigation for achieving simultaneous economic and social benefits

软件部署 知识管理 自动化 新兴技术 竞争优势 结构方程建模 计算机科学 管理科学 人工智能 工程类 营销 业务 机器学习 软件工程 机械工程
作者
Amit Kumar,Som Sekhar Bhattacharyya,Bala Krishnamoorthy
出处
期刊:Journal of Enterprise Information Management [Emerald (MCB UP)]
卷期号:36 (6): 1556-1582 被引量:21
标识
DOI:10.1108/jeim-09-2022-0307
摘要

Purpose The purpose of this research study was to understand the simultaneous competitive and social gains of machine learning (ML) and artificial intelligence (AI) usage in organizations. There was a knowledge hiatus regarding the contribution of the deployment of ML and AI technologies and their effects on organizations and society. Design/methodology/approach This study was grounded on the dynamic capabilities (DC) and ML and AI automation-augmentation paradox literature. This research study examined these theoretical perspectives using the response of 239 Indian organizational chief technology officers (CTOs). Partial least square-structural equation modeling (PLS-SEM) path modeling was applied for data analysis. Findings The results indicated that ML and AI technologies organizational usage positively influenced DC initiatives. The findings depicted that DC fully mediated ML and AI-based technologies' effects on firm performance and social performance. Research limitations/implications This study contributed to theoretical discourse regarding the tension between organizational and social outcomes of ML and AI technologies. The study extended the role of DC as a vital strategy in achieving social benefits from ML and AI use. Furthermore, the theoretical tension of the automation-augmentation paradox was explored. Practical implications Organizations deploying ML and AI technologies could apply this study's insights to comprehend the organizational routines to pursue simultaneous competitive benefits and social gains. Furthermore, chief technology executives of organizations could devise how ML and AI technologies usage from a DC perspective could help settle the tension of the automation-augmentation paradox. Social implications Increased ML and AI technologies usage in organizations enhanced DC. They could lead to positive social benefits such as new job creation, increased compensation to skilled employees and greater gender participation in employment. These insights could be derived based on this research study. Originality/value This study was among the first few empirical investigations to provide theoretical and practical insights regarding the organizational and societal benefits of ML and AI usage in organizations because of their DC. This study was also one of the first empirical investigations that addressed the automation-augmentation paradox at the enterprise level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时间煮雨我煮鱼完成签到,获得积分10
1秒前
哦哦发布了新的文献求助10
2秒前
闪闪蜜粉完成签到 ,获得积分10
4秒前
Qst完成签到,获得积分10
5秒前
平心定气完成签到 ,获得积分10
10秒前
紧张的书文完成签到 ,获得积分10
15秒前
15秒前
无情墨镜发布了新的文献求助10
20秒前
aIARLAE完成签到,获得积分10
24秒前
xzx完成签到,获得积分10
28秒前
36秒前
xpeng完成签到,获得积分10
36秒前
小马甲应助无情墨镜采纳,获得10
38秒前
lmj完成签到,获得积分10
42秒前
情怀应助yusheng采纳,获得10
43秒前
光合作用完成签到,获得积分10
45秒前
务实书包完成签到,获得积分10
49秒前
李爱国应助称心的忆枫采纳,获得10
52秒前
天才幸运鱼完成签到,获得积分10
52秒前
53秒前
单薄绿竹完成签到,获得积分10
59秒前
yusheng发布了新的文献求助10
1分钟前
等风来LYY发布了新的文献求助10
1分钟前
陌陌发布了新的文献求助10
1分钟前
ZY完成签到 ,获得积分20
1分钟前
负责不愁完成签到,获得积分20
1分钟前
1分钟前
善学以致用应助陌陌采纳,获得10
1分钟前
负责不愁发布了新的文献求助10
1分钟前
1分钟前
1分钟前
钟山发布了新的文献求助10
1分钟前
1分钟前
小静完成签到,获得积分10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
太阳当空照完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723454
求助须知:如何正确求助?哪些是违规求助? 5277734
关于积分的说明 15298730
捐赠科研通 4871918
什么是DOI,文献DOI怎么找? 2616372
邀请新用户注册赠送积分活动 1566191
关于科研通互助平台的介绍 1523088