Deep learning‐based radiomics model can predict extranodal soft tissue metastasis in gastric cancer

医学 无线电技术 队列 淋巴血管侵犯 放射科 癌症 转移 置信区间 肿瘤科 内科学
作者
Shengyuan Liu,Jingyu Deng,Di Dong,Mengjie Fang,Zhaoxiang Ye,Yanfeng Hu,Hailin Li,Lianzhen Zhong,Runnan Cao,Xun Zhao,Wenting Shang,Guoxin Li,Han Liang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 267-277 被引量:1
标识
DOI:10.1002/mp.16647
摘要

Abstract Background The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. Purpose This multicenter study aimed to develop a deep learning‐based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. Methods A total of 959 GC patients were enrolled from two centers and split into a training cohort ( N = 551) and a test cohort ( N = 236) for ESTM evaluation. Additionally, an external survival cohort ( N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand‐crafted radiomic model, a clinical model, and a combined model. C‐index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). Results The combined model showed good discrimination of the ESTM [C‐indices (95% confidence interval, CI): 0.770 (0.729–0.812) and 0.761 (0.718–0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification ( p < 0.05 ). Moreover, the model score showed strong consistency with the OS [C‐indices (95%CI): 0.723 (0.658–0.789, p < 0.0001 ) in the internal survival cohort and 0.715 (0.650–0.779, p < 0.0001 ) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis ( p < 0.05 ) that was missed by preoperative diagnosis. Conclusions The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟声完成签到,获得积分0
刚刚
Guo完成签到 ,获得积分10
1秒前
SDNUDRUG发布了新的文献求助10
1秒前
小马甲应助ybwei2008_163采纳,获得10
9秒前
陈尹蓝完成签到 ,获得积分10
11秒前
spy完成签到 ,获得积分10
13秒前
strama完成签到,获得积分10
13秒前
29秒前
Aaernan完成签到 ,获得积分10
33秒前
SDNUDRUG发布了新的文献求助10
35秒前
沐雨篱边完成签到 ,获得积分10
39秒前
科研通AI5应助山山而川采纳,获得10
41秒前
keyana25完成签到,获得积分10
53秒前
1523完成签到 ,获得积分10
54秒前
54秒前
山山而川发布了新的文献求助10
1分钟前
beplayer1完成签到,获得积分10
1分钟前
所所应助SDNUDRUG采纳,获得10
1分钟前
Sun1c7完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
阿托品完成签到 ,获得积分10
1分钟前
山山而川完成签到,获得积分10
1分钟前
祥子完成签到,获得积分10
1分钟前
1分钟前
SDNUDRUG发布了新的文献求助10
1分钟前
冷酷的闹闹完成签到 ,获得积分10
1分钟前
周冯雪完成签到 ,获得积分10
1分钟前
fang完成签到,获得积分10
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
2分钟前
糖宝完成签到 ,获得积分10
2分钟前
minuxSCI完成签到,获得积分10
2分钟前
winew完成签到 ,获得积分10
2分钟前
2分钟前
妮妮发布了新的文献求助10
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
狼来了aas完成签到,获得积分10
2分钟前
hanhan完成签到 ,获得积分10
2分钟前
HHHWJ完成签到 ,获得积分10
2分钟前
科研通AI5应助wwqing0704采纳,获得10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226680
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732