模式
土地覆盖
计算机科学
地球观测
封面(代数)
分割
遥感
环境数据
监督学习
数据挖掘
人工智能
机器学习
土地利用
数据科学
地理
工程类
卫星
人工神经网络
政治学
航空航天工程
社会科学
社会学
机械工程
土木工程
法学
作者
Michael Mommert,Nicolas Kesseli,Joëlle Hanna,Linus Scheibenreif,Damian Borth,Begüm Demir
标识
DOI:10.1109/igarss52108.2023.10282767
摘要
Deep learning methods have proven to be a powerful tool in the analysis of large amounts of complex Earth observation data. However, while Earth observation data are multi-modal in most cases, only single or few modalities are typically considered. In this work, we present the ben-ge dataset, which supplements the BigEarthNet-MM dataset by compiling freely and globally available geographical and environmental data. Based on this dataset, we showcase the value of combining different data modalities for the downstream tasks of patch-based land-use/land-cover classification and land-use/land-cover segmentation. ben-ge is freely available and expected to serve as a test bed for fully supervised and self-supervised Earth observation applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI