Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications

强化学习 计算机科学 动态规划 控制(管理) 自适应控制 事件(粒子物理) 最优控制 适应(眼睛) 人工智能 控制工程 工程类 数学优化 物理 数学 算法 量子力学 光学
作者
Ding Wang,Ning Gao,Derong Liu,Jinna Li,Frank L. Lewis
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 18-36 被引量:122
标识
DOI:10.1109/jas.2023.123843
摘要

Reinforcement learning (RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming (ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively. Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks, showing how they promote ADP formulation significantly. Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has demonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
threewei完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
清欢完成签到 ,获得积分10
1秒前
2秒前
xixun关注了科研通微信公众号
2秒前
3秒前
3秒前
解语花发布了新的文献求助50
4秒前
啊啊啊完成签到,获得积分10
5秒前
小琛完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
9秒前
9秒前
36038138完成签到 ,获得积分10
11秒前
XRenaissance发布了新的文献求助10
12秒前
搬砖发布了新的文献求助10
13秒前
13秒前
酱紫完成签到 ,获得积分10
13秒前
淡定妙海发布了新的文献求助10
13秒前
NexusExplorer应助盖世汤圆采纳,获得20
14秒前
14秒前
Azyyyy完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助30
15秒前
15秒前
陈昇发布了新的文献求助10
15秒前
cccf发布了新的文献求助100
16秒前
17秒前
冯俊驰发布了新的文献求助10
18秒前
海马成长痛完成签到,获得积分10
18秒前
丘比特应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
wswswsws应助科研通管家采纳,获得30
21秒前
浮游应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408