Real-time detection and analysis of foodborne pathogens via machine learning based fiber-optic Raman sensor

食品安全 拉曼光谱 软件可移植性 生化工程 计算机科学 纳米技术 材料科学 工艺工程 环境科学 食品科学 化学 工程类 物理 光学 程序设计语言
作者
Bohong Zhang,Md Asad Rahman,Jinling Liu,Jie Huang,Qingbo Yang
出处
期刊:Measurement [Elsevier BV]
卷期号:217: 113121-113121 被引量:26
标识
DOI:10.1016/j.measurement.2023.113121
摘要

Food safety is a critical concern worldwide, and in recent years, it has become a growing public concern in the United States due to mass production and multi-channel distribution of high-nutrient and fresh-cut foods that have increased the prevalence and diversity of foodborne pathogens (e.g., Escherichia coli, Salmonella, Listeria, etc.). Traditional methods for the detection of these pathogens rely heavily on low-efficiency techniques, which may expose the public to contaminated foods that have not been tested or identified. Therefore, rapid, simple, sensitive, and inexpensive detection methods are urgently needed for food safety investigations with higher efficiency and accuracy. One of the promising methods for the detection of foodborne pathogens is Raman spectroscopy, which is a molecular-level analytical tool with the advantages of high selectivity and sensitivity and simple operation at a relatively low cost. In this study, a novel fiber-optic-based portable Raman probe was developed and used for real-time detection of a panel of pathogen-specific molecular fingerprint volatile organic compounds (VOCs). Furthermore, machine learning (ML) algorithms were applied to assist in the extraction of molecular information from the raw Raman spectra, resulting in high accuracy prediction of complex VOC mixtures, even at high dilution folds (100x). The developed ML-assisted Raman probe has immense potential for rapid on-site detection of complex chemical mixtures in food safety and beyond. This innovative approach achieves high accuracy in comprehensively sorting mixed chemicals with varying concentrations and provides several advantages over previous studies, including speed, portability, non-contact operation, and precise classification of foodborne pathogen VOCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hui发布了新的文献求助10
1秒前
1秒前
3秒前
7秒前
年轻若男发布了新的文献求助10
7秒前
十块小子发布了新的文献求助10
7秒前
英姑应助淡定可乐采纳,获得10
7秒前
xiaoyangchun完成签到,获得积分10
12秒前
jenningseastera应助十块小子采纳,获得10
13秒前
屋顶橙子味完成签到 ,获得积分10
13秒前
江南烟雨如笙完成签到 ,获得积分10
14秒前
memory完成签到,获得积分10
14秒前
su完成签到 ,获得积分10
17秒前
Hester完成签到,获得积分10
18秒前
不会失忆完成签到,获得积分10
19秒前
19秒前
20秒前
渡怜芸完成签到 ,获得积分10
23秒前
Alex发布了新的文献求助10
26秒前
科研通AI5应助中中会发光采纳,获得10
27秒前
29秒前
刘小源完成签到 ,获得积分10
32秒前
ShiRz发布了新的文献求助10
33秒前
33秒前
36秒前
不会学术的羊完成签到,获得积分10
38秒前
紫琉花雨完成签到 ,获得积分10
38秒前
39秒前
40秒前
gomm完成签到,获得积分10
41秒前
42秒前
学术蠕虫发布了新的文献求助10
43秒前
qiao完成签到,获得积分10
44秒前
火星的雪完成签到 ,获得积分10
46秒前
淡定可乐发布了新的文献求助10
47秒前
xxx7749发布了新的文献求助10
47秒前
47秒前
天天向上完成签到 ,获得积分10
48秒前
迷路曼雁完成签到,获得积分10
49秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751