Classification of Three Anesthesia Stages Based on Near-Infrared Spectroscopy Signals

支持向量机 人工智能 模式识别(心理学) 特征选择 样本熵 计算机科学 脑电图 麻醉 分类器(UML) 信号(编程语言) 语音识别 医学 精神科 程序设计语言
作者
Zhian Liu,Lichengxi Si,Shaoxian Shi,Jing Li,Jing Zhu,Won Hee Lee,Sio‐Long Lo,Xiangguo Yan,Badong Chen,Feng Fu,Yang Zheng,Gang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5270-5279 被引量:8
标识
DOI:10.1109/jbhi.2024.3409163
摘要

Proper monitoring of anesthesia stages can guarantee the safe performance of clinical surgeries. In this study, different anesthesia stages were classified using near-infrared spectroscopy (NIRS) signals with machine learning. The cerebral hemodynamic variables of right proximal oxyhemoglobin (HbO 2 ) in maintenance (MNT), emergence (EM) and the consciousness (CON) stage were collected and then the differences between the three stages were compared by phase-amplitude coupling (PAC). Then combined with time-domain including linear (mean, standard deviation, max, min and range), nonlinear (sample entropy) and power in frequency-domain signal features, feature selection was performed and finally classification was performed by support vector machine (SVM) classifier. The results show that the PAC of the NIRS signal was gradually enhanced with the deepening of anesthesia level. A good three-classification accuracy of 69.27% was obtained, which exceeded the result of classification of any single category feature. These results indicate the fesibility of NIRS signals in performing three or even more anesthesia stage classifications, providing insight into the development of new anesthesia monitoring modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
张艳茹发布了新的文献求助10
3秒前
coco发布了新的文献求助10
4秒前
搜集达人应助keri采纳,获得10
5秒前
zy_发布了新的文献求助10
5秒前
6秒前
hyl发布了新的文献求助10
10秒前
周四一完成签到 ,获得积分10
10秒前
田田田发布了新的文献求助10
12秒前
txy发布了新的文献求助10
12秒前
coco完成签到,获得积分10
13秒前
开放的白玉完成签到,获得积分10
13秒前
任先生完成签到,获得积分10
15秒前
16秒前
17秒前
kylin完成签到,获得积分10
17秒前
wangjialin完成签到 ,获得积分10
18秒前
18秒前
18秒前
18秒前
19秒前
20秒前
20秒前
21秒前
22秒前
噼里啪啦发布了新的文献求助10
22秒前
22秒前
淡定而清月完成签到 ,获得积分10
22秒前
22秒前
丁的完成签到,获得积分10
23秒前
23秒前
任先生发布了新的文献求助10
23秒前
23秒前
24秒前
潇洒映冬发布了新的文献求助10
25秒前
mumu完成签到,获得积分10
25秒前
25秒前
电催化CYY发布了新的文献求助10
25秒前
25秒前
共行完成签到 ,获得积分10
26秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840235
求助须知:如何正确求助?哪些是违规求助? 3382393
关于积分的说明 10523553
捐赠科研通 3101930
什么是DOI,文献DOI怎么找? 1708499
邀请新用户注册赠送积分活动 822527
科研通“疑难数据库(出版商)”最低求助积分说明 773346