Classification of Three Anesthesia Stages Based on Near-Infrared Spectroscopy Signals

支持向量机 人工智能 模式识别(心理学) 特征选择 样本熵 计算机科学 脑电图 麻醉 分类器(UML) 信号(编程语言) 语音识别 医学 精神科 程序设计语言
作者
Zhian Liu,Lichengxi Si,Shaoxian Shi,Jing Li,Jing Zhu,Won Hee Lee,Sio‐Long Lo,Xiangguo Yan,Badong Chen,Feng Fu,Yang Zheng,Gang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5270-5279 被引量:8
标识
DOI:10.1109/jbhi.2024.3409163
摘要

Proper monitoring of anesthesia stages can guarantee the safe performance of clinical surgeries. In this study, different anesthesia stages were classified using near-infrared spectroscopy (NIRS) signals with machine learning. The cerebral hemodynamic variables of right proximal oxyhemoglobin (HbO 2 ) in maintenance (MNT), emergence (EM) and the consciousness (CON) stage were collected and then the differences between the three stages were compared by phase-amplitude coupling (PAC). Then combined with time-domain including linear (mean, standard deviation, max, min and range), nonlinear (sample entropy) and power in frequency-domain signal features, feature selection was performed and finally classification was performed by support vector machine (SVM) classifier. The results show that the PAC of the NIRS signal was gradually enhanced with the deepening of anesthesia level. A good three-classification accuracy of 69.27% was obtained, which exceeded the result of classification of any single category feature. These results indicate the fesibility of NIRS signals in performing three or even more anesthesia stage classifications, providing insight into the development of new anesthesia monitoring modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱多多完成签到,获得积分10
刚刚
chx2256120完成签到,获得积分10
1秒前
狂野忆文发布了新的文献求助10
1秒前
狂野忆文发布了新的文献求助10
1秒前
zhh完成签到,获得积分10
1秒前
Vi完成签到,获得积分10
1秒前
Lyubb完成签到,获得积分10
2秒前
tyra发布了新的文献求助20
2秒前
2秒前
彭于晏应助Ace采纳,获得10
3秒前
3秒前
风清扬应助xiaobo采纳,获得50
3秒前
lql完成签到,获得积分10
3秒前
FaintStar发布了新的文献求助20
3秒前
111完成签到,获得积分10
3秒前
田様应助俭朴的安阳采纳,获得10
4秒前
777发布了新的文献求助10
4秒前
lei发布了新的文献求助10
5秒前
迪娜完成签到,获得积分10
5秒前
传奇3应助ewetylgkhlj采纳,获得10
5秒前
huangbaba11完成签到 ,获得积分0
6秒前
千崧完成签到,获得积分10
6秒前
翟国庆发布了新的文献求助30
7秒前
8秒前
slsdy完成签到,获得积分10
8秒前
Nevaeh完成签到,获得积分10
9秒前
Silverexile完成签到,获得积分10
9秒前
10秒前
10秒前
潘盼盼完成签到,获得积分10
10秒前
11秒前
饭神仙鱼完成签到,获得积分10
11秒前
xiaocaiya发布了新的文献求助20
11秒前
小巧皮卡丘完成签到,获得积分10
11秒前
南橘发布了新的文献求助10
12秒前
Dream123完成签到,获得积分20
12秒前
13秒前
fixit发布了新的文献求助10
14秒前
14秒前
完美天蓝完成签到 ,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977168
求助须知:如何正确求助?哪些是违规求助? 3521380
关于积分的说明 11207629
捐赠科研通 3258296
什么是DOI,文献DOI怎么找? 1799006
邀请新用户注册赠送积分活动 878067
科研通“疑难数据库(出版商)”最低求助积分说明 806744