Ensemble learning for impurity prediction in high-purity indium purified via vertical zone refining

精炼(冶金) 杂质 区域熔化 集成学习 材料科学 环境科学 色谱法 化学 计算机科学 人工智能 光电子学 冶金 有机化学
作者
Zhongwen Shang,Mei‐Zhen Wu,Jubo Peng,Hongxing Zheng
出处
期刊:Intelligent systems with applications [Elsevier]
卷期号:22: 200390-200390
标识
DOI:10.1016/j.iswa.2024.200390
摘要

The complexity of raw materials and multi-step purification processes presents considerable technical challenges in establishing universally applicable process parameters for the production of high-purity metals. Machine learning has emerged as an indispensable tool in the field of materials science, facilitating the accurate prediction of target variables and accelerating process optimization, thereby yielding substantial reductions in both experimental costs and time. This study explores the utilization of high-precision machine learning models to predict the residual impurity content in high-purity indium after vertical zone refining. A dataset comprising 82 experimental datasets was employed to determine the optimal hyperparameters for XGBoost and LightGBM models through Bayesian optimization. The XGBoost and LightGBM models demonstrated mean absolute errors (MAEs) of 0.022 and 0.023, respectively, as determined via leave-one-out cross-validation (LOOCV). Their comparable predictive performance to the previously established Ridge regression model (MAE = 0.024) prompted the exploration of fusion techniques, including mean, weighted, and stacking fusion, to further enhance accuracy. Remarkably, the weighted fusion model exhibited the most optimal predictive capabilities, supported by comprehensive evaluation metrics, including an MAE of 0.020, root mean squared error (RMSE) of 0.026, and a coefficient of determination (R2 score) of 0.830. Furthermore, the SHapley Additive exPlanations (SHAP) analysis revealed a significant correlation between lower initial arsenic (As) content and reduced total post-refining impurity levels in both the XGBoost and LightGBM models. This study underscores the precision of ensemble learning in predicting residual impurity content in vertically zone-refined indium products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助王悦靓采纳,获得10
1秒前
科研通AI2S应助luis采纳,获得10
1秒前
科研通AI6应助吴衡采纳,获得30
3秒前
12we完成签到,获得积分10
5秒前
约定发布了新的文献求助20
6秒前
7秒前
华仔应助zhangl采纳,获得10
7秒前
Owen应助Amo采纳,获得10
7秒前
8秒前
香蕉诗蕊举报小杜求助涉嫌违规
8秒前
8秒前
徐啊徐完成签到,获得积分20
10秒前
小玛完成签到,获得积分20
11秒前
11秒前
11秒前
嘿嘿发布了新的文献求助10
11秒前
maph完成签到,获得积分10
12秒前
慢羊羊完成签到,获得积分10
13秒前
huaming发布了新的文献求助10
13秒前
DuanJN完成签到,获得积分10
13秒前
传奇3应助徐啊徐采纳,获得10
13秒前
小鱼发布了新的文献求助10
14秒前
yolo完成签到,获得积分10
15秒前
15秒前
香蕉诗蕊举报Ymie求助涉嫌违规
17秒前
浅唱完成签到,获得积分10
17秒前
我不吃葱完成签到 ,获得积分10
17秒前
彭于晏应助greenfly采纳,获得10
18秒前
BowieHuang应助好运6连采纳,获得10
18秒前
18秒前
LL发布了新的文献求助10
18秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
朴素沛山完成签到 ,获得积分10
23秒前
24秒前
谣谣完成签到,获得积分10
24秒前
zhuang完成签到 ,获得积分10
24秒前
所所应助暴发户采纳,获得30
25秒前
跳跃绮山完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597169
求助须知:如何正确求助?哪些是违规求助? 4682435
关于积分的说明 14826266
捐赠科研通 4659721
什么是DOI,文献DOI怎么找? 2536464
邀请新用户注册赠送积分活动 1504138
关于科研通互助平台的介绍 1470139