Identifying cropland non-agriculturalization with high representational consistency from bi-temporal high-resolution remote sensing images: From benchmark datasets to real-world application

水准点(测量) 高分辨率 一致性(知识库) 计算机科学 遥感 数据挖掘 人工智能 地理 地图学
作者
Zhendong Sun,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 454-474 被引量:4
标识
DOI:10.1016/j.isprsjprs.2024.05.011
摘要

Cropland non-agriculturalization (CNA) refers to the conversion of cropland into construction land, woodland/garden/grassland, water body, or other non-agricultural land, which ultimately disrupts local agroecosystems and the cultivation and production of crops. Remote sensing technology is an important tool for large-area CNA detection, and remote sensing based methods that can be used for this task include the time-series analysis method and change detection from bi-temporal images. In particular, change detection methods using high-resolution remote sensing imagery have great potential for CNA detection, but enormous challenges do still remain. The large intra-class variance of cropland with different phenological stages and planting patterns leads to cropland areas being difficult to identify effectively, while certain features can be misidentified because they are similar to cropland, resulting in false alarms and missed detections in the results. There is also a lack of large-scale CNA datasets covering multiple change scenarios as data support. To address these problems, a lightweight model focused on CNA detection (CNANet) is proposed in this paper. Specifically, the uniquely crafted represent-consist-enhance (RCE) module is seamlessly integrated between the encoder and decoder components of CNANet to perform a contrast operation on the deep features extracted by the feature extractor. The RCE module is specifically designed to aggregate multiple cropland representations and extend the cropland representations from the confusing background, to achieve the purpose of reducing the intra-class reflectance differences and enhancing the model's perception of cropland. In addition, a large-scale high-resolution cropland non-agriculturalization (Hi-CNA) dataset was built for the CNA identification task, with a total of 6797 pairs of 512 × 512 images with semantic annotations. Compared to the existing datasets, the Hi-CNA dataset has the advantages of multiple phenological stages, multiple change scenarios, and multiple annotation types, in addition to the large data volume. The experimental results obtained in this study show that the benchmark methods tested on the Hi-CNA dataset can all achieve a good accuracy, proving the high-quality annotation of the dataset. The overall accuracy and F1-score of CNANet with the default settings reach 93.81 % and 78.9 %, respectively, achieving a superior accuracy, compared to the other benchmark methods, and demonstrating stronger perception of cropland changes. In addition, in two selected verification regions within the large-scale real-world CNA mapping results, the F1-score is 83.61 % and 50.87 %. The Hi-CNA can be downloaded from http://rsidea.whu.edu.cn/Hi-CNA_dataset.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZIS完成签到,获得积分10
4秒前
HEAUBOOK应助7123采纳,获得10
6秒前
CodeCraft应助小超人采纳,获得10
6秒前
7秒前
科研通AI5应助123采纳,获得10
9秒前
lyy完成签到,获得积分10
10秒前
idiom完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
罗中翠发布了新的文献求助10
14秒前
探寻发布了新的文献求助10
16秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
无花果应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
sunn完成签到,获得积分10
20秒前
lh完成签到,获得积分10
20秒前
T拐拐发布了新的文献求助10
21秒前
21秒前
21秒前
7123完成签到,获得积分10
24秒前
卡洛完成签到,获得积分10
26秒前
领导范儿应助dinghaifeng采纳,获得10
27秒前
27秒前
27秒前
领导范儿应助大知闲闲采纳,获得10
27秒前
luwei0618发布了新的文献求助10
31秒前
123完成签到,获得积分10
31秒前
31秒前
32秒前
34秒前
123发布了新的文献求助10
34秒前
星辰大海应助微眠采纳,获得10
34秒前
35秒前
科研通AI5应助In采纳,获得10
35秒前
鱼书发布了新的文献求助10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814404
求助须知:如何正确求助?哪些是违规求助? 3358503
关于积分的说明 10395700
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 812995
科研通“疑难数据库(出版商)”最低求助积分说明 767428