Cross-Scene Hyperspectral Image Classification Based on Graph Alignment and Distribution Alignment

高光谱成像 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 一致性(知识库) 特征提取 图形 计算机视觉 理论计算机科学 哲学 语言学
作者
Haisong Chen,Shanshan Ding,Aili Wang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (9): 1731-1731
标识
DOI:10.3390/electronics13091731
摘要

A domain alignment-based hyperspectral image (HSI) classification method was designed to address the heterogeneity in resolution and band between the source domain and target domain datasets of cross-scene hyperspectral images, as well as the resulting reduction in common features. Firstly, after preliminary feature extraction, perform two domain alignment operations: image alignment and distribution alignment. Image alignment aims to align hyperspectral images of different bands or time points, ensuring that they are within the same spatial reference framework. Distribution alignment adjusts the distribution of features of samples of different categories in the feature space to reduce the distribution differences of the same type of features between two domains. Secondly, adjust the consistency of the two alignment methods to ensure that the features obtained through different alignment methods exhibit consistency in the feature space, thereby improving the comparability and reliability of the features. In addition, this method considers multiple losses in the model from different perspectives and makes comprehensive adjustments through a unified optimization process to more comprehensively capture and utilize the correlation information between data. Experimental results on Houston 2013 and Houston 2018 datasets can improve the hyperspectral prediction performance between datasets with different resolutions and bands, effectively solving the problems of high cost and limited training samples in HSI labeling and significantly improving cross-scene HSI classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wshwx发布了新的文献求助10
4秒前
澜汐发布了新的文献求助10
5秒前
tianxiong完成签到,获得积分10
5秒前
xiong发布了新的文献求助30
6秒前
1111完成签到 ,获得积分10
6秒前
9秒前
20秒前
科研通AI2S应助apzxh采纳,获得10
20秒前
20秒前
慕青应助zk采纳,获得10
21秒前
谷雨完成签到 ,获得积分10
22秒前
幽默的太阳完成签到 ,获得积分10
23秒前
24秒前
25秒前
26秒前
尚奇发布了新的文献求助10
26秒前
歪歪yyyyc完成签到,获得积分10
32秒前
尚奇完成签到,获得积分10
32秒前
研友_Z30GJ8完成签到,获得积分0
36秒前
38秒前
无私的馒头完成签到,获得积分10
38秒前
Yy完成签到 ,获得积分10
38秒前
性感母蟑螂完成签到 ,获得积分10
40秒前
高高的石头完成签到,获得积分10
41秒前
兔BF完成签到,获得积分10
42秒前
42秒前
公冶愚志完成签到 ,获得积分10
45秒前
47秒前
共享精神应助advance采纳,获得10
49秒前
科目三应助爱笑海云采纳,获得10
50秒前
梅西完成签到 ,获得积分10
52秒前
52秒前
57秒前
59秒前
qq完成签到 ,获得积分20
59秒前
waayu完成签到 ,获得积分10
59秒前
59秒前
advance发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776338
求助须知:如何正确求助?哪些是违规求助? 3321773
关于积分的说明 10207718
捐赠科研通 3037092
什么是DOI,文献DOI怎么找? 1666533
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870