Application of Machine Learning for Shale Oil and Gas “Sweet Spots” Prediction

油页岩 石油工程 成熟度(心理) 页岩气 化石燃料 软件部署 地质学 环境科学 采矿工程 工程类 废物管理 心理学 古生物学 发展心理学 软件工程
作者
Hongjun Wang,Z.D. Guo,Xiangwen Kong,Xinshun Zhang,Ping Wang,Yunpeng Shan
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (9): 2191-2191 被引量:5
标识
DOI:10.3390/en17092191
摘要

With the continuous improvement of shale oil and gas recovery technologies and achievements, a large amount of geological information and data have been accumulated for the description of shale reservoirs, and it has become possible to use machine learning methods for “sweet spots” prediction in shale oil and gas areas. Taking the Duvernay shale oil and gas field in Canada as an example, this paper attempts to build recoverable shale oil and gas reserve prediction models using machine learning methods and geological and development big data, to predict the distribution of recoverable shale oil and gas reserves and provide a basis for well location deployment and engineering modifications. The research results of the machine learning model in this study are as follows: ① Three machine learning methods were applied to build a prediction model and random forest showed the best performance. The R2 values of the built recoverable shale oil and gas reserves prediction models are 0.7894 and 0.8210, respectively, with an accuracy that meets the requirements of production applications; ② The geological main controlling factors for recoverable shale oil and gas reserves in this area are organic matter maturity and total organic carbon (TOC), followed by porosity and effective thickness; the main controlling factor for engineering modifications is the total proppant volume, followed by total stages and horizontal lateral length; ③ The abundance of recoverable shale oil and gas reserves in the central part of the study area is predicted to be relatively high, which makes it a favorable area for future well location deployment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eric888应助圆锥香蕉采纳,获得200
刚刚
刚刚
草莓完成签到,获得积分10
刚刚
Music完成签到,获得积分10
1秒前
1秒前
cincrady完成签到,获得积分10
2秒前
柚子完成签到,获得积分10
2秒前
cdc完成签到 ,获得积分10
2秒前
还没想好完成签到,获得积分10
3秒前
3秒前
思源应助ZY采纳,获得10
3秒前
陶远望完成签到,获得积分10
3秒前
xfyxxh完成签到,获得积分10
3秒前
xwkcys完成签到,获得积分20
3秒前
张萌洁完成签到,获得积分10
3秒前
Samuel完成签到,获得积分10
4秒前
4秒前
wqmdd发布了新的文献求助10
4秒前
小黄发布了新的文献求助20
4秒前
小二郎应助23XZYZN采纳,获得10
4秒前
陈叉叉完成签到,获得积分10
4秒前
AU发布了新的文献求助10
4秒前
5秒前
拉长的芷烟完成签到 ,获得积分10
5秒前
5秒前
嗷嗷嗷啊完成签到,获得积分10
6秒前
6秒前
DarrenVan完成签到,获得积分10
6秒前
磊2024完成签到,获得积分10
8秒前
PPP完成签到,获得积分10
8秒前
8秒前
白蓝红完成签到 ,获得积分10
8秒前
常常发布了新的文献求助30
9秒前
9秒前
陈叉叉发布了新的文献求助10
9秒前
农夫果园完成签到,获得积分10
9秒前
10秒前
昌怜烟完成签到,获得积分10
11秒前
Christian完成签到,获得积分10
11秒前
li发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4306311
求助须知:如何正确求助?哪些是违规求助? 3828666
关于积分的说明 11980955
捐赠科研通 3469383
什么是DOI,文献DOI怎么找? 1902557
邀请新用户注册赠送积分活动 950069
科研通“疑难数据库(出版商)”最低求助积分说明 852012