Prediction of cadmium content using machine learning methods

生物地球科学 环境工程科学 人工智能 机器学习 计算机科学 地质学 材料科学 冶金 地球科学
作者
Mehmet Keçeci,Fatih Gökmen,Mustafa Usul,Celal Koca,Veli Uygur
出处
期刊:Environmental Earth Sciences [Springer Science+Business Media]
卷期号:83 (12) 被引量:5
标识
DOI:10.1007/s12665-024-11672-5
摘要

Abstract Heavy metals are the most environmentally hazardous pollutions in agricultural soils, threatening humans and several ecosystem services. Cadmium (Cd) is a highly toxic element but distinctively different from other heavy metals with its high mobility in soil environments. The study aimed to evaluate the Cd concentration of soils in the Konya plain with a specific attribute to soil fertilization, mainly phosphorous fertilizers. A total of 538 surface (0–20 cm) soil samples were analyzed to determine basic physical and chemical properties and total phosphorus (P) and Cd concentrations. Descriptive statistics, machine learning, and regression models were used to assess the accumulation of Cd in soils. Decision Trees, Linear Regression, Random Forest, and XGBoost machine learning methods were used in Cd prediction. The XGBoost model proved to be the best prediction model, with a coefficient of determination of 98.1%. Electrical conductivity, pH, CaCO 3 , silt, and P were used in the Cd estimation of the XGBoost model and explained 56.51% of the total variance in relation to measured soil properties. The results revealed that a machine learning algorithm could be useful for estimating Cd concentration in soils using basic physical and chemical soil properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
一条热带鱼完成签到,获得积分10
1秒前
fangliu完成签到,获得积分10
2秒前
2秒前
Espresso发布了新的文献求助200
2秒前
子俞完成签到,获得积分10
2秒前
斯文败类应助viavia采纳,获得10
2秒前
赘婿应助TANG采纳,获得10
2秒前
负责石头完成签到,获得积分10
3秒前
wangmeili.发布了新的文献求助10
3秒前
3秒前
3秒前
星辰大海应助狂野傲南采纳,获得10
3秒前
干脆苹果完成签到,获得积分10
3秒前
clean发布了新的文献求助10
3秒前
Kindy完成签到,获得积分10
3秒前
haixin发布了新的文献求助10
4秒前
4秒前
4秒前
所所应助意志所向采纳,获得10
4秒前
斯文可仁发布了新的文献求助10
5秒前
meng完成签到,获得积分10
5秒前
池番发布了新的文献求助10
6秒前
我是老大应助Ball采纳,获得30
6秒前
甘愿完成签到,获得积分10
7秒前
7秒前
一见你就笑完成签到,获得积分10
7秒前
8秒前
asdlxz发布了新的文献求助10
8秒前
俭朴忆寒发布了新的文献求助10
8秒前
情怀应助坚强丹雪采纳,获得10
8秒前
CC发布了新的文献求助50
9秒前
Ava应助leeeeee采纳,获得10
9秒前
fafuer完成签到,获得积分10
9秒前
Lu发布了新的文献求助20
9秒前
刀笔吏完成签到,获得积分10
9秒前
yyy完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809673
求助须知:如何正确求助?哪些是违规求助? 3354199
关于积分的说明 10369497
捐赠科研通 3070479
什么是DOI,文献DOI怎么找? 1686340
邀请新用户注册赠送积分活动 810900
科研通“疑难数据库(出版商)”最低求助积分说明 766433