Form generative approach for front face design of electric vehicle under female aesthetic preferences

面子(社会学概念) 生成语法 前线(军事) 生成设计 工程类 人工智能 计算机科学 人机交互 工程制图 建筑工程 美学 机械工程 社会学 艺术 运营管理 社会科学 公制(单位)
作者
Bingkun Yuan,Kai Wu,Xinying Wu,Chaoxiang Yang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:62: 102571-102571 被引量:18
标识
DOI:10.1016/j.aei.2024.102571
摘要

Vehicles are the most representative product of both transportation and industry. Fueled by the growing popularity of energy-saving and environmentally friendly ideas and policies, new energy technologies and their supporting industries are experiencing constant development and refinement. As a result, electric vehicles (EVs) are steadily displacing traditional fuel-powered vehicles as the dominant force in the vehicle market. The experience economy is driving a significant shift in the direction of EV development, which is transitioning from improving functionality to optimizing the emotional connection consumers have with their vehicles. This means the form factor of the vehicle itself is becoming a key element in attracting consumers and influencing purchasing decisions. Over half of China's EV consumer market is comprised of females. However, many companies continue to develop products solely from a male perspective, missing out on a vast market opportunity. Therefore, incorporating design elements that cater to female aesthetic preferences into EVs can undoubtedly play a crucial role in unlocking this significant segment of the market. Based on this, the paper proposes a form generative design approach that specifically caters to the preferences of female consumers within the theoretical framework of Kansei engineering. The research process begins by obtaining Kansei imagery through the collection and analysis of big data. Subsequently, eye-tracking experiments are conducted to define the key design elements of the automobiles. Concurrently, appropriate aesthetic measurement indicator (AMI) system is established. Next, AMI values are computed for the sample set. This data is then leveraged to create a mapping relationship with the Kansei imagery, enabling the objective reflection of subjective aesthetic evaluations. Finally, an integrated Kansei evaluation equation serves as the fitness function within a generative approach that utilizes genetic algorithms and visual AI to produce form design solutions for electric vehicles. The evaluation confirms that the proposed design approach successfully generates a substantial number of high-quality creative solutions that align with female aesthetic preferences, while maintaining low cost and high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助浓缩蓝鲸采纳,获得10
刚刚
香蕉觅云应助不想看文献采纳,获得10
1秒前
好柿花生发布了新的文献求助10
1秒前
不懈奋进应助勤奋的天亦采纳,获得30
1秒前
深情安青应助Baiye采纳,获得10
2秒前
shark发布了新的文献求助30
2秒前
3秒前
顷禾完成签到,获得积分10
4秒前
xiaolu完成签到,获得积分10
4秒前
啧啧啧完成签到,获得积分10
5秒前
koui发布了新的文献求助10
5秒前
思源应助Heliotrope采纳,获得30
6秒前
7秒前
7秒前
zzxx完成签到,获得积分10
8秒前
小白t73完成签到 ,获得积分10
8秒前
领导范儿应助xiaolu采纳,获得11
9秒前
量子星尘发布了新的文献求助10
9秒前
边雨欣完成签到,获得积分10
9秒前
ysxl发布了新的文献求助10
9秒前
Li完成签到,获得积分10
9秒前
救我完成签到,获得积分10
9秒前
10秒前
14秒前
浮游应助bbzzzha采纳,获得10
14秒前
14秒前
隐形曼青应助超级玛丽采纳,获得10
14秒前
安徒完成签到,获得积分10
15秒前
15秒前
15秒前
积极向上完成签到,获得积分10
15秒前
大个应助koui采纳,获得10
15秒前
16秒前
16秒前
www发布了新的文献求助10
17秒前
汉堡包应助小梁要加油采纳,获得10
17秒前
litn完成签到 ,获得积分10
17秒前
酷酷白开水完成签到,获得积分10
18秒前
yong发布了新的文献求助10
19秒前
一叶扁舟完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478694
求助须知:如何正确求助?哪些是违规求助? 4580309
关于积分的说明 14373800
捐赠科研通 4508706
什么是DOI,文献DOI怎么找? 2470860
邀请新用户注册赠送积分活动 1457568
关于科研通互助平台的介绍 1431472