SCD-SAM: Adapting Segment Anything Model for Semantic Change Detection in Remote Sensing Imagery

计算机科学 编码器 特征提取 变更检测 人工智能 语义鸿沟 杠杆(统计) 稳健性(进化) 模式识别(心理学) 计算机视觉 图像(数学) 图像检索 生物化学 化学 基因 操作系统
作者
Liye Mei,Zhaoyi Ye,Chuan Xu,Hongzhu Wang,Ying Wang,Cheng Lei,Wei Yang,Yansheng Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2024.3407884
摘要

Semantic change detection (SCD) has gradually emerged as a prominent research focus in remote sensing image processing due to its critical role in earth observation applications. In view of its powerful semantic-driven feature extraction capability, the Segment Anything Model (SAM) has demonstrated its suitability across various visual scenes. However, it suffers from significant performance degradation when confronted with remote sensing images, especially those containing various ground objects that possess significant inter-class similarity and substantial intra-class variations. To address the above issues, we propose SCD-SAM, aiming to leverage the potent visual recognition capabilities of SAM for enhanced accuracy and robustness in SCD. Specifically, we introduce a contextual semantic change-aware dual encoder that combines MobileSAM and CNN to extract progressive semantic change features in parallel, and inject local features into the MobileSAM encoder through depth feature interaction to compensate for the Transformer's limitations in perceiving local semantic details. Besides, in order to utilize the strong visual feature extraction capability of MobileSAM in remote sensing images, we propose a semantic adaptor that aggregates semantic-oriented information about changing objects. To better integrate the extracted contextual semantic information, we devise a progressive feature aggregation dual decoder that aggregates binary change features and semantic change features respectively, alleviating the semantic gap across different scales. The quantitative and visual results show that SCD-SAM outperforms the state-of-the-art SCD methods on publicly open SCD datasets (e.g., SECOND-CD and Landsat-CD). The code will be made available at https://github.com/yzygit1230/SCD-SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福语儿发布了新的文献求助20
1秒前
zz完成签到,获得积分10
3秒前
3秒前
ardejiang发布了新的文献求助30
3秒前
MHY完成签到,获得积分20
3秒前
pny发布了新的文献求助10
4秒前
搜集达人应助c123采纳,获得10
5秒前
5秒前
科研通AI5应助JW采纳,获得10
5秒前
7秒前
ding应助大橘采纳,获得10
8秒前
hyhyhyhy发布了新的文献求助10
8秒前
信步发布了新的文献求助10
9秒前
lll完成签到 ,获得积分10
9秒前
我是老大应助希希采纳,获得10
11秒前
zzz完成签到,获得积分10
11秒前
香蕉觅云应助Jane采纳,获得10
12秒前
清新的幻桃完成签到,获得积分10
13秒前
Akim应助hyhyhyhy采纳,获得10
16秒前
17秒前
Fitz完成签到,获得积分10
17秒前
缓慢采柳发布了新的文献求助10
18秒前
19秒前
男研选手完成签到,获得积分10
20秒前
潘妍西关注了科研通微信公众号
20秒前
橘子海完成签到 ,获得积分10
20秒前
高兴的海亦发布了新的文献求助100
20秒前
20秒前
英姑应助扎心采纳,获得10
20秒前
所所应助wuwuwu采纳,获得10
21秒前
21秒前
jinoir发布了新的文献求助10
22秒前
欣欣完成签到,获得积分10
22秒前
23秒前
23秒前
lihaifeng完成签到,获得积分10
24秒前
秃头披风侠完成签到,获得积分10
24秒前
深情安青应助AA采纳,获得10
25秒前
hyhyhyhy发布了新的文献求助10
25秒前
希希发布了新的文献求助10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783709
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239058
捐赠科研通 3044346
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759171