SCD-SAM: Adapting Segment Anything Model for Semantic Change Detection in Remote Sensing Imagery

计算机科学 编码器 特征提取 变更检测 人工智能 语义鸿沟 杠杆(统计) 稳健性(进化) 模式识别(心理学) 计算机视觉 图像(数学) 图像检索 生物化学 基因 操作系统 化学
作者
Liye Mei,Zhaoyi Ye,Chuan Xu,Hongzhu Wang,Ying Wang,Cheng Lei,Wei Yang,Yansheng Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:33
标识
DOI:10.1109/tgrs.2024.3407884
摘要

Semantic change detection (SCD) has gradually emerged as a prominent research focus in remote sensing image processing due to its critical role in earth observation applications. In view of its powerful semantic-driven feature extraction capability, the Segment Anything Model (SAM) has demonstrated its suitability across various visual scenes. However, it suffers from significant performance degradation when confronted with remote sensing images, especially those containing various ground objects that possess significant inter-class similarity and substantial intra-class variations. To address the above issues, we propose SCD-SAM, aiming to leverage the potent visual recognition capabilities of SAM for enhanced accuracy and robustness in SCD. Specifically, we introduce a contextual semantic change-aware dual encoder that combines MobileSAM and CNN to extract progressive semantic change features in parallel, and inject local features into the MobileSAM encoder through depth feature interaction to compensate for the Transformer's limitations in perceiving local semantic details. Besides, in order to utilize the strong visual feature extraction capability of MobileSAM in remote sensing images, we propose a semantic adaptor that aggregates semantic-oriented information about changing objects. To better integrate the extracted contextual semantic information, we devise a progressive feature aggregation dual decoder that aggregates binary change features and semantic change features respectively, alleviating the semantic gap across different scales. The quantitative and visual results show that SCD-SAM outperforms the state-of-the-art SCD methods on publicly open SCD datasets (e.g., SECOND-CD and Landsat-CD). The code will be made available at https://github.com/yzygit1230/SCD-SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doc.Wang发布了新的文献求助10
1秒前
含蓄的敏发布了新的文献求助10
1秒前
2秒前
姗姗完成签到,获得积分10
3秒前
星辰大海应助HaHa270采纳,获得10
3秒前
何佳发布了新的文献求助10
3秒前
4秒前
5秒前
脑洞疼应助啊啊啊啊采纳,获得10
5秒前
不知发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
shancai完成签到,获得积分10
8秒前
shine发布了新的文献求助30
9秒前
领导范儿应助杨123采纳,获得10
9秒前
旺仔同学完成签到,获得积分10
10秒前
10秒前
11秒前
q额完成签到,获得积分10
11秒前
小杭76应助旺仔牛奶采纳,获得10
12秒前
攘攘发布了新的文献求助30
12秒前
12秒前
bkagyin应助shancai采纳,获得10
15秒前
15秒前
15秒前
15秒前
15秒前
16秒前
浮游应助十八鱼采纳,获得10
17秒前
bemyselfelsa发布了新的文献求助10
17秒前
李秋静完成签到,获得积分10
18秒前
19秒前
不知完成签到,获得积分20
19秒前
安年发布了新的文献求助10
20秒前
shenwei发布了新的文献求助10
20秒前
20秒前
q额发布了新的文献求助10
21秒前
林小雨完成签到,获得积分10
21秒前
DC发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300188
求助须知:如何正确求助?哪些是违规求助? 4448119
关于积分的说明 13844972
捐赠科研通 4333773
什么是DOI,文献DOI怎么找? 2379109
邀请新用户注册赠送积分活动 1374221
关于科研通互助平台的介绍 1339946