Wireless Distributed Learning: A New Hybrid Split and Federated Learning Approach

计算机科学 架空(工程) 独立同分布随机变量 传输(电信) 人工智能 基站 分布式计算 无线 机器学习 异步通信 计算机网络 电信 统计 数学 随机变量 操作系统
作者
Xiaolan Liu,Yansha Deng,Toktam Mahmoodi
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 2650-2665 被引量:39
标识
DOI:10.1109/twc.2022.3213411
摘要

Cellular-connected unmanned aerial vehicle (UAV) with flexible deployment is foreseen to be a major part of the sixth generation (6G) networks. The UAVs connected to the base station (BS), as aerial users (UEs), could exploit machine learning (ML) algorithms to provide a wide range of advanced applications, like object detection and video tracking. Conventionally, the ML model training is performed at the BS, known as centralized learning (CL), which causes high communication overhead due to the transmission of large datasets, and potential concerns about UE privacy. To address this, distributed learning algorithms, including federated learning (FL) and split learning (SL), were proposed to train the ML models in a distributed manner via only sharing model parameters. FL requires higher computational resource on the UE side than SL, while SL has larger communication overhead when the local dataset is large. To effectively train an ML model considering the diversity of UEs with different computational capabilities and channel conditions, we first propose a novel distributed learning architecture, a hybrid split and federated learning (HSFL) algorithm by reaping the parallel model training mechanism of FL and the model splitting structure of SL. We then provide its convergence analysis under non-independent and identically distributed (non-IID) data with random UE selection scheme. By conducting experiments on training two ML models, Net and AlexNet, in wireless UAV networks, our results demonstrate that the HSFL algorithm achieves higher learning accuracy than FL and less communication overhead than SL under IID and non-IID data, and the learning accuracy of HSFL algorithm increases with the increasing number of the split training UEs. We further propose a Multi-Arm Bandit (MAB) based best channel (BC) and best 2-norm (BN2) (MAB-BC-BN2) UE selection scheme to select the UEs with better wireless channel quality and larger local model updates for model training in each round. Numerical results demonstrate it achieves higher learning accuracy than BC, MAB-BC and MAB-BN2 UE selection scheme under non-IID, Dirichlet-nonIID and Dirichlet-Imbalanced data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho关闭了zho文献求助
1秒前
cdercder应助乖巧的菜猪采纳,获得10
2秒前
3秒前
wrf3驳回了Oracle应助
4秒前
天天快乐应助jin采纳,获得10
5秒前
S.S发布了新的文献求助10
8秒前
烟花应助lizhiqian2024采纳,获得10
9秒前
老茗同学发布了新的文献求助10
9秒前
9秒前
顾矜应助Ailin采纳,获得10
10秒前
10秒前
布雨完成签到,获得积分10
13秒前
顺心的惜蕊完成签到 ,获得积分10
14秒前
14秒前
14秒前
14秒前
15秒前
殷勤的紫槐发布了新的文献求助200
16秒前
科研通AI5应助Wangyingjie5采纳,获得10
19秒前
晨青发布了新的文献求助10
19秒前
20秒前
石幻枫发布了新的文献求助10
20秒前
。。。完成签到,获得积分10
23秒前
23秒前
lizhiqian2024发布了新的文献求助10
26秒前
小鞋发布了新的文献求助10
26秒前
晨青完成签到,获得积分10
26秒前
27秒前
29秒前
会撒娇的小猫咪完成签到,获得积分20
29秒前
传奇3应助to高坚果采纳,获得10
32秒前
34秒前
wang发布了新的文献求助10
34秒前
英俊的铭应助我很懵逼采纳,获得10
34秒前
林妹妹完成签到 ,获得积分10
36秒前
彭于晏应助科研通管家采纳,获得10
37秒前
37秒前
完美世界应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997