An accurate prediction of the origin for bone metastatic cancer using deep learning on digital pathological images

医学 H&E染色 数字化病理学 概化理论 癌症 病理 活检 肿瘤科 免疫组织化学 内科学 人工智能 计算机科学 统计 数学
作者
Lianghui Zhu,Huijuan Shi,Huiting Wei,Chengjiang Wang,Shanshan Shi,Fenfen Zhang,Renao Yan,Yiqing Liu,Tingting He,Sheng Wang,Junru Cheng,Hufei Duan,Hong Du,Fanzhang Meng,Wenli Zhao,Xia Gu,Linlang Guo,Yingpeng Ni,Yonghong He,Tian Gu,Anjia Han
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:87: 104426-104426 被引量:6
标识
DOI:10.1016/j.ebiom.2022.104426
摘要

Determining the origin of bone metastatic cancer (OBMC) is of great significance to clinical therapeutics. It is challenging for pathologists to determine the OBMC with limited clinical information and bone biopsy.We designed a regional multiple-instance learning algorithm to predict the OBMC based on hematoxylin-eosin (H&E) staining slides alone. We collected 1041 cases from eight different hospitals and labeled 26,431 regions of interest to train the model. The performance of the model was assessed by ten-fold cross validation and external validation. Under the guidance of top3 predictions, we conducted an IHC test on 175 cases of unknown origins to compare the consistency of the results predicted by the model and indicated by the IHC markers. We also applied the model to identify whether there was tumor or not in a region, as well as distinguishing squamous cell carcinoma, adenocarcinoma, and neuroendocrine tumor.In the within-cohort, our model achieved a top1-accuracy of 91.35% and a top3-accuracy of 97.75%. In the external cohort, our model displayed a good generalizability with a top3-accuracy of 97.44%. The top1 consistency between the results of the model and the immunohistochemistry markers was 83.90% and the top3 consistency was 94.33%. The model obtained an accuracy of 98.98% to identify whether there was tumor or not and an accuracy of 93.85% to differentiate three types of cancers.Our model demonstrated good performance to predict the OBMC from routine histology and had great potential for assisting pathologists with determining the OBMC accurately.National Science Foundation of China (61875102 and 61975089), Natural Science Foundation of Guangdong province (2021A15-15012379 and 2022A1515 012550), Science and Technology Research Program of Shenzhen City (JCYJ20200109110606054 and WDZC20200821141349001), and Tsinghua University Spring Breeze Fund (2020Z99CFZ023).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIAYUEMA发布了新的文献求助10
1秒前
1秒前
ymc的dad完成签到,获得积分10
1秒前
sylens发布了新的文献求助10
2秒前
乐闻发布了新的文献求助50
2秒前
Mars_1108完成签到,获得积分10
3秒前
xiying发布了新的文献求助10
4秒前
gy1991发布了新的文献求助10
4秒前
4秒前
天天快乐应助Ls_12采纳,获得20
5秒前
5秒前
酷波er应助hwezhu采纳,获得10
5秒前
你可真下饭完成签到,获得积分10
5秒前
芝士熊发布了新的文献求助10
6秒前
6秒前
大成子发布了新的文献求助10
6秒前
安AN完成签到,获得积分10
6秒前
6秒前
7秒前
深情安青应助艾玛采纳,获得10
7秒前
雷乾发布了新的文献求助10
8秒前
活泼芷文完成签到 ,获得积分10
8秒前
enchanted完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
kaka完成签到,获得积分10
10秒前
男孩完成签到,获得积分10
10秒前
00完成签到 ,获得积分10
10秒前
yorkin完成签到 ,获得积分10
11秒前
lulu发布了新的文献求助30
11秒前
乔修亚完成签到,获得积分10
12秒前
蓝鲸发布了新的文献求助10
12秒前
zz关闭了zz文献求助
12秒前
12秒前
12秒前
wuming完成签到,获得积分10
12秒前
MathFun发布了新的文献求助10
12秒前
13秒前
英姑应助cellzaizia采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141