Digital Twin-Based Tool State Prognosis Model for Drilling Machines

支持向量机 演习 钻探 计算机科学 人工智能 国家(计算机科学) 机器学习 工程类 机械工程 算法
作者
Sunidhi Dayam,K. A. Desai
标识
DOI:10.1115/msec2022-85449
摘要

Abstract Digital Twin technology can be effectively employed for prognosis and predictive maintenance tasks by establishing interconnections between manufacturing equipment and its virtual counterpart. This paper presents the Tool State Prognosis (TSP) model based on Digital Twin philosophy to perceive the state of a twist drill during the drilling operation. The TSP model estimates the state of a twist drill viz. initial, intermediate, or worn during the operation rather than obtaining the precise wear value. The Digital Twin collects input information as time-series data by establishing an appropriate connection protocol with a drilling machine using vibration and acoustic emission sensors. The Root Mean Square (RMS) approach and Quadratic Support Vector Machine (QSVM) are employed for feature extraction and recognizing the twist drill status with Remaining Useful Life (RUL) prediction from the time-series data. The model also includes integrating a Human Machine Interface (HMI) unit for displaying tool status and RUL information to assist operators in tool replacement decisions. The developed model can be integrated as an edge-level solution with manual and CNC drilling machines without significant hardware changes for perceiving the status of a twist drill. The prediction abilities of the digital twin are corroborated by performing a set of drilling experiments for various cutting tool-workpiece combinations. The confusion matrices demonstrated the effectiveness and generalization abilities of the developed model by comparing predicted and actual classes for each combination. The developed Digital Twin model can quickly respond to tool status and failure with enhanced man-machine interactions and improved prognosis abilities for the drilling machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangnanjyy123发布了新的文献求助10
刚刚
zooro发布了新的文献求助10
刚刚
战神林北完成签到,获得积分10
1秒前
2秒前
科研通AI6应助克偃统统采纳,获得10
2秒前
kkk完成签到,获得积分10
2秒前
HM完成签到,获得积分10
2秒前
欢欢子完成签到,获得积分10
2秒前
4秒前
4秒前
5秒前
脉动完成签到,获得积分10
5秒前
6秒前
西红柿呀发布了新的文献求助20
7秒前
7秒前
8秒前
脉动发布了新的文献求助10
8秒前
鱼蛋完成签到 ,获得积分10
8秒前
麦子发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
NexusExplorer应助伏坎采纳,获得10
12秒前
哇嘞完成签到 ,获得积分10
13秒前
传奇3应助ZRBY采纳,获得10
13秒前
CodeCraft应助loewy采纳,获得10
13秒前
13秒前
13秒前
14秒前
LZHANK1NG完成签到,获得积分10
14秒前
Silverexile完成签到,获得积分10
15秒前
15秒前
15秒前
一颗栗子完成签到,获得积分10
16秒前
笨笨紫完成签到,获得积分10
16秒前
整齐凌青应助天真青旋采纳,获得10
16秒前
健壮念寒完成签到,获得积分20
17秒前
领导范儿应助gj采纳,获得20
17秒前
sxx完成签到 ,获得积分10
17秒前
跳跃寻绿发布了新的文献求助10
18秒前
李健应助科研小白采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420235
求助须知:如何正确求助?哪些是违规求助? 4535334
关于积分的说明 14149695
捐赠科研通 4452346
什么是DOI,文献DOI怎么找? 2442137
邀请新用户注册赠送积分活动 1433646
关于科研通互助平台的介绍 1410931