Leveraging Ensemble Models and Follow-up Data for Accurate Prediction of mRS Scores from Radiomic Features of DSC-PWI Images

计算机科学 人工智能 无线电技术 模式识别(心理学)
作者
Mazen M Yassin,Asim Zaman,Jiaxi Lu,Yang Huihui,Anbo Cao,Haseeb Hassan,Taiyu Han,Xiaoqiang Miao,Yongkang Shi,Yingwei Guo,Yu Luo,Yan Kang
标识
DOI:10.1007/s10278-024-01280-x
摘要

Predicting long-term clinical outcomes based on the early DSC PWI MRI scan is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict multilabel 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by combining ensemble models and different configurations of radiomic features generated from Dynamic susceptibility contrast perfusion-weighted imaging. In Follow-up studies, a total of 70 acute ischemic stroke (AIS) patients underwent magnetic resonance imaging within 24 hours poststroke and had a follow-up scan. In the single study, 150 DSC PWI Image scans for AIS patients. The DRF are extracted from DSC-PWI Scans. Then Lasso algorithm is applied for feature selection, then new features are generated from initial and follow-up scans. Then we applied different ensemble models to classify between three classes normal outcome (0, 1 mRS score), moderate outcome (2,3,4 mRS score), and severe outcome (5,6 mRS score). ANOVA and post-hoc Tukey HSD tests confirmed significant differences in model style performance across various studies and classification techniques. Stacking models consistently on average outperformed others, achieving an Accuracy of 0.68 ± 0.15, Precision of 0.68 ± 0.17, Recall of 0.65 ± 0.14, and F1 score of 0.63 ± 0.15 in the follow-up time study. Techniques like Bo_Smote showed significantly higher recall and F1 scores, highlighting their robustness and effectiveness in handling imbalanced data. Ensemble models, particularly Bagging and Stacking, demonstrated superior performance, achieving nearly 0.93 in Accuracy, 0.95 in Precision, 0.94 in Recall, and 0.94 in F1 metrics in follow-up conditions, significantly outperforming single models. Ensemble models based on radiomics generated from combining Initial and follow-up scans can be used to predict multilabel 90-day stroke outcomes with reduced subjectivity and user burden.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助猪猪hero采纳,获得10
1秒前
1秒前
游畅发布了新的文献求助10
2秒前
majx发布了新的文献求助10
2秒前
YS完成签到,获得积分10
2秒前
3秒前
3秒前
英勇的若灵完成签到,获得积分20
4秒前
DELI完成签到 ,获得积分10
5秒前
学术山芋发布了新的文献求助10
6秒前
彭a完成签到,获得积分10
7秒前
醒醒完成签到,获得积分10
7秒前
chiech发布了新的文献求助10
7秒前
开朗艳一完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
11秒前
泥泞完成签到 ,获得积分10
12秒前
呆呆完成签到 ,获得积分10
12秒前
南浔完成签到 ,获得积分10
12秒前
13秒前
希望天下0贩的0应助李彪采纳,获得10
14秒前
coconut发布了新的文献求助10
14秒前
chiech完成签到,获得积分10
15秒前
JCao727完成签到,获得积分10
17秒前
GLFCX发布了新的文献求助10
18秒前
山河星梦完成签到,获得积分10
18秒前
负责金毛完成签到,获得积分10
19秒前
务实雁梅完成签到,获得积分10
19秒前
月亮不知道完成签到,获得积分10
19秒前
忘崽子小拳头完成签到,获得积分10
19秒前
19秒前
19秒前
21秒前
brodie完成签到,获得积分10
21秒前
一个美女完成签到,获得积分10
22秒前
不思议完成签到,获得积分10
25秒前
MX完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4719583
求助须知:如何正确求助?哪些是违规求助? 4080331
关于积分的说明 12617145
捐赠科研通 3784790
什么是DOI,文献DOI怎么找? 2090600
邀请新用户注册赠送积分活动 1116613
科研通“疑难数据库(出版商)”最低求助积分说明 993685