清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning Virtual View Selection for 3D Scene Semantic Segmentation

计算机科学 人工智能 计算机视觉 图像分割 分割 选择(遗传算法) 模式识别(心理学)
作者
Tai‐Jiang Mu,Mengting Shen,Yu‐Kun Lai,Shi‐Min Hu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4159-4172 被引量:3
标识
DOI:10.1109/tip.2024.3421952
摘要

2D-3D joint learning is essential and effective for fundamental 3D vision tasks, such as 3D semantic segmentation, due to the complementary information these two visual modalities contain. Most current 3D scene semantic segmentation methods process 2D images "as they are", i.e., only real captured 2D images are used. However, such captured 2D images may be redundant, with abundant occlusion and/or limited field of view (FoV), leading to poor performance for the current methods involving 2D inputs. In this paper, we propose a general learning framework for joint 2D-3D scene understanding by selecting informative virtual 2D views of the underlying 3D scene. We then feed both the 3D geometry and the generated virtual 2D views into any joint 2D-3D-input or pure 3D-input based deep neural models for improving 3D scene understanding. Specifically, we generate virtual 2D views based on an information score map learned from the current 3D scene semantic segmentation results. To achieve this, we formalize the learning of the information score map as a deep reinforcement learning process, which rewards good predictions using a deep neural network. To obtain a compact set of virtual 2D views that jointly cover informative surfaces of the 3D scene as much as possible, we further propose an efficient greedy virtual view coverage strategy in the normal-sensitive 6D space, including 3-dimensional point coordinates and 3-dimensional normal. We have validated our proposed framework for various joint 2D-3D-input or pure 3D-input based deep neural models on two real-world 3D scene datasets, i.e., ScanNet v2 and S3DIS, and the results demonstrate that our method obtains a consistent gain over baseline models and achieves new top accuracy for joint 2D and 3D scene semantic segmentation. Code is available at https://github.com/smy-THU/VirtualViewSelection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Lny采纳,获得20
1秒前
Luna爱科研完成签到 ,获得积分10
26秒前
36秒前
雅琪完成签到,获得积分20
42秒前
徐团伟完成签到 ,获得积分10
48秒前
51秒前
1分钟前
雅琪发布了新的文献求助10
1分钟前
令狐子轩完成签到,获得积分10
1分钟前
兴奋的新蕾完成签到,获得积分10
1分钟前
握瑾怀瑜完成签到 ,获得积分0
1分钟前
creep2020完成签到,获得积分10
1分钟前
1分钟前
星辰大海应助葵花籽采纳,获得10
1分钟前
科研通AI6应助尚尚采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
喜悦的唇彩完成签到,获得积分10
1分钟前
1分钟前
herpes完成签到 ,获得积分10
2分钟前
2分钟前
郑阔完成签到,获得积分10
2分钟前
Thunnus001完成签到 ,获得积分10
2分钟前
小刘同学完成签到,获得积分20
2分钟前
蚊蚊爱读书应助小刘同学采纳,获得10
2分钟前
star完成签到,获得积分10
2分钟前
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
锦鲤完成签到 ,获得积分20
2分钟前
3分钟前
3分钟前
袁青寒发布了新的文献求助10
3分钟前
袁青寒发布了新的文献求助10
3分钟前
蚊蚊爱读书应助小刘同学采纳,获得10
3分钟前
啦啦啦完成签到 ,获得积分10
3分钟前
3分钟前
顺利山柏完成签到 ,获得积分10
4分钟前
Echopotter发布了新的文献求助10
4分钟前
Jenny发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555062
求助须知:如何正确求助?哪些是违规求助? 4639610
关于积分的说明 14656433
捐赠科研通 4581586
什么是DOI,文献DOI怎么找? 2512865
邀请新用户注册赠送积分活动 1487557
关于科研通互助平台的介绍 1458561