Learning Virtual View Selection for 3D Scene Semantic Segmentation

计算机科学 人工智能 计算机视觉 图像分割 分割 选择(遗传算法) 模式识别(心理学)
作者
Tai‐Jiang Mu,Mingyang Shen,Yu‐Kun Lai,Shi‐Min Hu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4159-4172
标识
DOI:10.1109/tip.2024.3421952
摘要

2D-3D joint learning is essential and effective for fundamental 3D vision tasks, such as 3D semantic segmentation, due to the complementary information these two visual modalities contain. Most current 3D scene semantic segmentation methods process 2D images "as they are", i.e., only real captured 2D images are used. However, such captured 2D images may be redundant, with abundant occlusion and/or limited field of view (FoV), leading to poor performance for the current methods involving 2D inputs. In this paper, we propose a general learning framework for joint 2D-3D scene understanding by selecting informative virtual 2D views of the underlying 3D scene. We then feed both the 3D geometry and the generated virtual 2D views into any joint 2D-3D-input or pure 3D-input based deep neural models for improving 3D scene understanding. Specifically, we generate virtual 2D views based on an information score map learned from the current 3D scene semantic segmentation results. To achieve this, we formalize the learning of the information score map as a deep reinforcement learning process, which rewards good predictions using a deep neural network. To obtain a compact set of virtual 2D views that jointly cover informative surfaces of the 3D scene as much as possible, we further propose an efficient greedy virtual view coverage strategy in the normal-sensitive 6D space, including 3-dimensional point coordinates and 3-dimensional normal. We have validated our proposed framework for various joint 2D-3D-input or pure 3D-input based deep neural models on two real-world 3D scene datasets, i.e., ScanNet v2 and S3DIS, and the results demonstrate that our method obtains a consistent gain over baseline models and achieves new top accuracy for joint 2D and 3D scene semantic segmentation. Code is available at https://github.com/smy-THU/VirtualViewSelection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tonald Yang发布了新的文献求助10
3秒前
落叶完成签到 ,获得积分10
3秒前
Air完成签到 ,获得积分10
5秒前
胜胜糖完成签到 ,获得积分10
8秒前
听寒完成签到,获得积分10
10秒前
zz完成签到 ,获得积分10
15秒前
zp完成签到,获得积分10
16秒前
为你等候完成签到,获得积分10
20秒前
夏傥发布了新的文献求助10
20秒前
xdc完成签到,获得积分10
24秒前
沐风完成签到 ,获得积分10
24秒前
梅特卡夫完成签到,获得积分10
25秒前
申燕婷完成签到 ,获得积分10
25秒前
tang完成签到,获得积分10
27秒前
小程完成签到 ,获得积分10
30秒前
xiaowanzi完成签到 ,获得积分10
30秒前
QQLL完成签到,获得积分10
30秒前
烂漫代曼完成签到 ,获得积分10
31秒前
ioio完成签到 ,获得积分10
32秒前
记忆完成签到,获得积分10
32秒前
猴子大王完成签到 ,获得积分10
33秒前
afar完成签到 ,获得积分10
38秒前
leotao完成签到,获得积分10
38秒前
fomo完成签到,获得积分10
39秒前
李爱国应助AlanLi采纳,获得10
39秒前
彪壮的幻丝完成签到 ,获得积分10
40秒前
现实的小蚂蚁完成签到,获得积分10
41秒前
nano完成签到 ,获得积分10
41秒前
091完成签到 ,获得积分10
45秒前
lpx43完成签到,获得积分10
46秒前
LY0430完成签到 ,获得积分10
46秒前
Kavin完成签到,获得积分10
48秒前
如意竺完成签到,获得积分10
48秒前
小潘完成签到 ,获得积分10
50秒前
tian发布了新的文献求助10
51秒前
wangxiaoyating完成签到,获得积分10
52秒前
52秒前
AlanLi发布了新的文献求助10
55秒前
huangdq6完成签到 ,获得积分10
55秒前
河堤完成签到 ,获得积分10
56秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118729
求助须知:如何正确求助?哪些是违规求助? 3657356
关于积分的说明 11577236
捐赠科研通 3359211
什么是DOI,文献DOI怎么找? 1845738
邀请新用户注册赠送积分活动 910829
科研通“疑难数据库(出版商)”最低求助积分说明 827082