A Novel Network for Low-Dose CT Denoising Based on Dual-Branch Structure and Multi-Scale Residual Attention

残余物 对偶(语法数字) 比例(比率) 人工智能 网络结构 降噪 计算机科学 环境科学 模式识别(心理学) 材料科学 算法 机器学习 地理 地图学 艺术 文学类
作者
Ju Zhang,Lieli Ye,Weiwei Gong,Mingyang Chen,Guangyu Liu,Yun Cheng
标识
DOI:10.1007/s10278-024-01254-z
摘要

Deep learning-based denoising of low-dose medical CT images has received great attention both from academic researchers and physicians in recent years, and has shown important application value in clinical practice. In this work, a novel two-branch and multi-scale residual attention-based network for low-dose CT image denoising is proposed. It adopts a two-branch framework structure, to extract and fuse image features at shallow and deep levels respectively, to recover image texture and structure information as much as possible. We propose the adaptive dynamic convolution block (ADCB) in the local information extraction layer. It can effectively extract the detailed information of low-dose CT denoising and enables the network to better capture the local details and texture features of the image, thereby improving the denoising effect and image quality. Multi-scale edge enhancement attention block (MEAB) is proposed in the global information extraction layer, to perform feature fusion through dilated convolution and a multi-dimensional attention mechanism. A multi-scale residual convolution block (MRCB) is proposed to integrate feature information and improve the robustness and generalization of the network. To demonstrate the effectiveness of our method, extensive comparison experiments are conducted and the performances evaluated on two publicly available datasets. Our model achieves 29.3004 PSNR, 0.8659 SSIM, and 14.0284 RMSE on the AAPM-Mayo dataset. It is evaluated by adding four different noise levels σ = 15, 30, 45, and 60 on the Qin_LUNG_CT dataset and achieves the best results. Ablation studies show that the proposed ADCB, MEAB, and MRCB modules improve the denoising performances significantly. The source code is available at https://github.com/Ye111-cmd/LDMANet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HL完成签到,获得积分10
1秒前
1秒前
赘婿应助嫩黄的大纽子花采纳,获得10
2秒前
斯文败类应助风中小鸽子采纳,获得10
2秒前
浸道发布了新的文献求助10
4秒前
喻白发布了新的文献求助10
6秒前
科研通AI5应助完美的妙芹采纳,获得10
6秒前
科研通AI5应助完美的妙芹采纳,获得10
6秒前
7秒前
7秒前
8秒前
黄杰完成签到 ,获得积分10
10秒前
Lucas应助UpUp采纳,获得10
11秒前
可爱的函函应助土豆土豆采纳,获得10
11秒前
2023204306324发布了新的文献求助10
12秒前
小玉米发布了新的文献求助10
13秒前
GG完成签到 ,获得积分10
14秒前
xxxqqq完成签到,获得积分10
15秒前
17秒前
18秒前
shilong.yang完成签到,获得积分10
18秒前
清颜完成签到 ,获得积分10
19秒前
20秒前
风中小鸽子完成签到,获得积分10
20秒前
犹豫的若发布了新的文献求助10
20秒前
xixi890430发布了新的文献求助50
20秒前
糊涂的雁易应助干饭采纳,获得10
20秒前
20秒前
shilong.yang发布了新的文献求助10
21秒前
21秒前
清爽的恋风完成签到,获得积分10
21秒前
22秒前
22秒前
桐桐应助izumi采纳,获得10
22秒前
gxh发布了新的文献求助10
23秒前
UpUp发布了新的文献求助10
23秒前
ikun完成签到,获得积分10
24秒前
GG关注了科研通微信公众号
24秒前
李健的小迷弟应助wegrvfd采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812456
求助须知:如何正确求助?哪些是违规求助? 3356978
关于积分的说明 10384629
捐赠科研通 3074104
什么是DOI,文献DOI怎么找? 1688616
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960