亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constraints Driven Safe Reinforcement Learning for Autonomous Driving Decision-Making

强化学习 计算机科学 错误驱动学习 人机交互 人工智能
作者
Fei Gao,Xiaodong Wang,Yuze Fan,Zhenhai Gao,Rui Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 128007-128023 被引量:3
标识
DOI:10.1109/access.2024.3454249
摘要

Although reinforcement learning (RL) methodologies exhibit potential in addressing decision-making and planning problems in autonomous driving, ensuring the safety of the vehicle under all circumstances remains a formidable challenge in practical applications. Current RL methods are predominantly driven by singular reward mechanisms, frequently encountering difficulties in balancing multiple sub-rewards such as safety, comfort, and efficiency. To address these limitations, this paper introduces a constraint-driven safety RL method, applied to decision-making and planning policy in highway scenarios. This method ensures decisions maximize performance rewards within the bounds of safety constraints, exhibiting exceptional robustness. Initially, the framework reformulates the autonomous driving decision-making problem as a Constrained Markov Decision Process (CMDP) within the safety RL framework. It then introduces a Multi-Level Safety-Constrained Policy Optimization (MLSCPO) method, incorporating a cost function to address safety constraints. Ultimately, simulated tests conducted within the CARLA environment demonstrate that the proposed method MLSCPO outperforms the current advanced safe reinforcement learning policy, Proximal Policy Optimization with Lagrangian (PPO-Lag) and the traditional stable longitudinal and lateral autonomous driving model, Intelligent Driver Model with Minimization of Overall Braking Induced by Lane Changes (IDM+MOBIL). Compared to the classic IDM+MOBIL method, the proposed approach not only achieves efficient driving but also offers a better driving experience. In comparison with the reinforcement learning method PPO-Lag, it significantly enhances safety while ensuring driving efficiency, achieving a zero-collision rate. In the future, we will integrate the aforementioned potential expansion plans to enhance the usability and generalization capabilities of the method in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清雨发布了新的文献求助10
2秒前
陳.发布了新的文献求助10
5秒前
斯文败类应助陳.采纳,获得10
9秒前
搜集达人应助陳.采纳,获得10
9秒前
完美世界应助陳.采纳,获得10
9秒前
情怀应助陳.采纳,获得10
9秒前
情怀应助陳.采纳,获得10
9秒前
科研通AI2S应助陳.采纳,获得10
10秒前
领导范儿应助陳.采纳,获得10
10秒前
星辰大海应助陳.采纳,获得10
10秒前
清雨完成签到,获得积分10
14秒前
热带蚂蚁完成签到 ,获得积分10
36秒前
51秒前
ZL关闭了ZL文献求助
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
af发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
冯冯完成签到,获得积分10
1分钟前
半夏完成签到,获得积分10
1分钟前
共享精神应助af采纳,获得10
2分钟前
2分钟前
老橘子发布了新的文献求助30
2分钟前
夏柯完成签到,获得积分10
2分钟前
无花果应助幸福的逍遥采纳,获得10
2分钟前
迅速初柳发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
af发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
小马甲应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
小泉完成签到 ,获得积分10
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746872
求助须知:如何正确求助?哪些是违规求助? 5439957
关于积分的说明 15355990
捐赠科研通 4886836
什么是DOI,文献DOI怎么找? 2627476
邀请新用户注册赠送积分活动 1575917
关于科研通互助平台的介绍 1532711