Lightweight Food Recognition via Aggregation Block and Feature Encoding

计算机科学 编码(内存) 块(置换群论) 特征(语言学) 人工智能 模式识别(心理学) 语言学 哲学 几何学 数学
作者
Yancun Yang,Weiqing Min,Jingru Song,Guorui Sheng,Lili Wang,Shuqiang Jiang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (10): 1-25 被引量:2
标识
DOI:10.1145/3680285
摘要

Food image recognition has recently been given considerable attention in the multimedia field in light of its possible implications on health. The characteristics of the dispersed distribution of ingredients in food images put forward higher requirements on the long-range information extraction ability of neural networks, leading to more complex and deeper models. Nevertheless, the lightweight version of food image recognition is essential for improved implementation on end devices and sustained server-side expansion. To address this issue, we present Aggregation Feature Net (AFNet), a lightweight network that is capable of effectively capturing both global and local features from food images. In AFNet, we develop a novel convolution based on a residual model by encoding global features through row-wise and column-wise information integration. Merging aggregation block with classic local convolution yields a framework that works as the backbone of the network. Based on the efficient use of parameters by the aggregation block, we constructed a lightweight food image recognition network with fewer layers and a smaller scale, assisted by a new type of activation function. Experimental results on four popular food recognition datasets demonstrate that our approach achieves state-of-the-art performance with higher accuracy and fewer FLOPs and parameters. For example, in comparison to the current state-of-the-art model of MobileViTv2, AFNet achieved 88.4% accuracy of the top-1 level on the ETHZ Food-101 dataset, with similar parameters and FLOPs but 1.4% more accuracy. The source code will be provided in supplementary materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
afrex完成签到,获得积分10
1秒前
xiaoliuyaonuli完成签到,获得积分10
1秒前
mmol发布了新的文献求助10
1秒前
此身越重洋完成签到,获得积分10
1秒前
1秒前
1秒前
烟花应助木木采纳,获得10
2秒前
3秒前
zjmm发布了新的文献求助10
3秒前
青云完成签到,获得积分10
3秒前
ananan完成签到 ,获得积分10
3秒前
太叔丹翠完成签到 ,获得积分10
4秒前
Tatsuya完成签到,获得积分20
5秒前
zby完成签到,获得积分10
5秒前
medaW发布了新的文献求助10
5秒前
5秒前
李健应助乐观的阿这采纳,获得10
5秒前
月倚樱落时完成签到,获得积分10
5秒前
yyyy完成签到,获得积分10
5秒前
6秒前
6秒前
Leisure_Lee完成签到,获得积分10
6秒前
CCsouljump发布了新的文献求助30
6秒前
念心发布了新的文献求助10
7秒前
遗迹小白完成签到,获得积分10
8秒前
毛毛完成签到,获得积分10
8秒前
GuangChe发布了新的文献求助10
8秒前
zsl完成签到 ,获得积分10
9秒前
俭朴安柏发布了新的文献求助10
9秒前
mmol完成签到,获得积分10
9秒前
小马甲应助zjmm采纳,获得10
10秒前
Mr_I完成签到,获得积分10
10秒前
七QI完成签到 ,获得积分10
10秒前
11秒前
夏xia完成签到,获得积分10
11秒前
夜雨完成签到,获得积分10
11秒前
shirley完成签到,获得积分10
11秒前
喝可乐的萝卜兔完成签到 ,获得积分10
12秒前
霉霉完成签到 ,获得积分10
12秒前
大胆的忆安完成签到 ,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784903
求助须知:如何正确求助?哪些是违规求助? 3330232
关于积分的说明 10245019
捐赠科研通 3045573
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800646
科研通“疑难数据库(出版商)”最低求助积分说明 759577