亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsafe behavior identification on construction sites by combining computer vision and knowledge graph–based reasoning

鉴定(生物学) 计算机科学 知识图 人工智能 图形 机器学习 理论计算机科学 植物 生物
作者
Xinyu Mei,Feng Xu,Zhipeng Zhang,Tao Yu
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-05-2024-0622
摘要

Purpose Workers' unsafe behavior is the main cause of construction safety accidents, thereby highlighting the critical importance of behavior-based management. To compensate for the limitations of computer vision in tackling knowledge-intensive issues, semantic-based methods have gained increasing attention in the field of construction safety management. Knowledge graph provides an efficient and visualized method for the identification of various unsafe behaviors. Design/methodology/approach This study proposes an unsafe behavior identification framework by integrating computer vision and knowledge graph–based reasoning. An enhanced ontology model anchors our framework, with image features from YOLOv5, COCO Panoptic Segmentation and DeepSORT integrated into the graph database, culminating in a structured knowledge graph. An inference module is also developed, enabling automated the extraction of unsafe behavior knowledge through rule-based reasoning. Findings A case application is implemented to demonstrate the feasibility and effectiveness of the proposed method. Results show that the method can identify various unsafe behaviors from images of construction sites and provide mitigation recommendations for safety managers by automated reasoning, thus supporting on-site safety management and safety education. Originality/value Existing studies focus on spatial relationships, often neglecting the diversified spatiotemporal information in images. Besides, previous research in construction safety only partially automated knowledge graph construction and reasoning processes. In contrast, this study constructs an enhanced knowledge graph integrating static and dynamic data, coupled with an inference module for fully automated knowledge-based unsafe behavior identification. It can help managers grasp the workers’ behavior dynamics and timely implement measures to correct violations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饼干发布了新的文献求助10
3秒前
饼干完成签到,获得积分20
12秒前
23秒前
传奇3应助LYL采纳,获得10
26秒前
48秒前
1分钟前
1分钟前
彭于晏应助11采纳,获得10
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
老石完成签到 ,获得积分10
1分钟前
1分钟前
称心如意完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
LYL发布了新的文献求助10
2分钟前
桐桐应助11采纳,获得10
2分钟前
2分钟前
123完成签到,获得积分10
2分钟前
11发布了新的文献求助10
2分钟前
Denmark完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
Roentgenstrahlen完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
rerorero18发布了新的文献求助10
4分钟前
zyw完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
长发飘飘发布了新的文献求助10
5分钟前
Akim应助长发飘飘采纳,获得10
6分钟前
星辰大海应助勇往直前采纳,获得10
6分钟前
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263158
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511