亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Model-Free Approach for Solving Choice-Based Competitive Facility Location Problems Using Simulation and Submodularity

计算机科学 设施选址问题 数学优化 运筹学 数学
作者
Robin Legault,Emma Frejinger
出处
期刊:Informs Journal on Computing 被引量:5
标识
DOI:10.1287/ijoc.2023.0280
摘要

This paper considers facility location problems in which a firm entering a market seeks to open facilities on a subset of candidate locations so as to maximize its expected market share, assuming that customers choose the available alternative that maximizes a random utility function. We introduce a deterministic equivalent reformulation of this stochastic problem as a maximum covering location problem with an exponential number of demand points, each of which is covered by a different set of candidate locations. Estimating the prevalence of these preference profiles through simulation generalizes a sample average approximation method from the literature and results in a maximum covering location problem of manageable size. To solve it, we develop a partial Benders reformulation in which the contribution to the objective of the least influential preference profiles is aggregated and bounded by submodular cuts. This set of profiles is selected by a knee detection method that seeks to identify the best tradeoff between the fraction of the demand that is retained in the master problem and the size of the model. We develop a theoretical analysis of our approach and show that the solution quality it provides for the original stochastic problem, its computational performance, and the automatic profile-retention strategy it exploits are directly connected to the entropy of the preference profiles in the population. Computational experiments on existing and new benchmark sets indicate that our approach dominates the classical sample average approximation method on large instances of the competitive facility location problem, can outperform the best heuristic method from the literature under the multinomial logit model, and achieves state-of-the-art results under the mixed multinomial logit model. We characterize a broader class of problems, which includes assortment optimization, to which the solving methodology and the analyses developed in this paper can be extended. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This research was supported by Fonds de Recherche du Québec-Nature et Technologies and Institut de Valorisation des Données through scholarships to R. Legault. E. Frejinger was partially supported by the Canada Research Chair program [Grant 950-232244]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/ijoc.2023.0280 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助谨慎从露采纳,获得10
刚刚
2秒前
啦啦啦发布了新的文献求助10
4秒前
Hu发布了新的文献求助10
6秒前
7秒前
10秒前
谨慎从露完成签到,获得积分10
11秒前
谨慎从露发布了新的文献求助10
15秒前
啦啦啦完成签到,获得积分10
15秒前
Hu完成签到,获得积分20
15秒前
19秒前
兮豫完成签到 ,获得积分10
21秒前
鸡狗不如完成签到,获得积分20
29秒前
Owen应助ZERO采纳,获得10
33秒前
35秒前
36秒前
clonidine完成签到,获得积分10
38秒前
kk_1315完成签到,获得积分0
39秒前
Redde发布了新的文献求助10
40秒前
46秒前
moncypool发布了新的文献求助10
47秒前
佳佳完成签到 ,获得积分10
47秒前
viettu7d完成签到,获得积分10
48秒前
gnn完成签到 ,获得积分10
53秒前
TXZ06完成签到,获得积分10
55秒前
1分钟前
九月完成签到,获得积分10
1分钟前
远山发布了新的文献求助10
1分钟前
陈陈完成签到,获得积分10
1分钟前
1分钟前
九月发布了新的文献求助10
1分钟前
李正纲完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
冷静新烟发布了新的文献求助10
1分钟前
小二郎应助远山采纳,获得30
1分钟前
99668完成签到,获得积分10
1分钟前
1分钟前
aerosol完成签到,获得积分10
1分钟前
酷波er应助nenoaowu采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077101
求助须知:如何正确求助?哪些是违规求助? 4296381
关于积分的说明 13386872
捐赠科研通 4118686
什么是DOI,文献DOI怎么找? 2255446
邀请新用户注册赠送积分活动 1259898
关于科研通互助平台的介绍 1192996