Early Prediction of All-Cause Clinical Deterioration in General Wards Patients: Development and Validation of a Biomarker-Based Machine Learning Model Derived From Rapid Response Team Activations

生物标志物 计算机科学 医学 机器学习 人工智能 重症监护医学 化学 生物化学
作者
Antoine Saab,Cynthia Abi Khalil,M. Jammal,Melody Saikali,Jean-Baptiste Lamy
出处
期刊:Journal of Patient Safety [Ovid Technologies (Wolters Kluwer)]
卷期号:18 (6): 578-586 被引量:5
标识
DOI:10.1097/pts.0000000000001069
摘要

Objective The aim of the study is to evaluate the performance of a biomarker-based machine learning (ML) model (not including vital signs) derived from reviewed rapid response team (RRT) activations in predicting all-cause deterioration in general wards patients. Design This is a retrospective single-institution study. All consecutive adult patients’ cases on noncritical wards identified by RRT calls occurring at least 24 hours after patient admission, between April 2018 and June 2020, were included. The cases were reviewed and labeled for clinical deterioration by a multidisciplinary expert consensus panel. A supervised learning approach was adopted based on a set of biomarkers and demographic data available in the patient’s electronic medical record (EMR). Setting The setting is a 250-bed tertiary university hospital with a basic EMR, with adult (>18 y) patients on general wards. Patients The study analyzed the cases of 514 patients for which the RRT was activated. Rapid response teams were extracted from the hospital telephone log data. Two hundred eighteen clinical deterioration cases were identified in these patients after expert chart review and complemented by 146 “nonevent” cases to build the training and validation data set. Interventions None Measurements and Main Results The best performance was achieved with the random forests algorithm, with a maximal area under the receiver operating curve of 0.90 and F 1 score of 0.85 obtained at prediction time T 0 –6h, slightly decreasing but still acceptable (area under the receiver operating curve, >0.8; F 1 score, >0.75) at T 0 –42h. The system outperformed most classical track-and-trigger systems both in terms of prediction performance and prediction horizon. Conclusions In hospitals with a basic EMR, a biomarker-based ML model could be used to predict clinical deterioration in general wards patients earlier than classical track-and-trigger systems, thus enabling appropriate clinical interventions for patient safety and improved outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助猫猫采纳,获得10
1秒前
好好发布了新的文献求助10
1秒前
希望天下0贩的0应助haodong采纳,获得10
1秒前
2秒前
2秒前
英俊的铭应助highkick采纳,获得10
3秒前
花开富贵发布了新的文献求助10
3秒前
3秒前
4秒前
橙熟发布了新的文献求助30
5秒前
YaoHui发布了新的文献求助10
5秒前
慕青应助八九采纳,获得10
6秒前
7秒前
7秒前
ding应助anny2022采纳,获得10
8秒前
花开富贵完成签到,获得积分10
8秒前
9秒前
9秒前
hae完成签到,获得积分20
9秒前
10秒前
科研通AI6应助LYC采纳,获得10
10秒前
orixero应助文艺紫菜采纳,获得10
10秒前
10秒前
田様应助gigiW采纳,获得10
10秒前
雪白的山河关注了科研通微信公众号
10秒前
11秒前
赘婿应助盏盏采纳,获得10
11秒前
zh发布了新的文献求助10
12秒前
12秒前
12秒前
dodo完成签到,获得积分10
12秒前
兔子发布了新的文献求助10
13秒前
爱果果完成签到 ,获得积分10
13秒前
杂兵甲完成签到,获得积分10
14秒前
qiandi完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342027
求助须知:如何正确求助?哪些是违规求助? 4478011
关于积分的说明 13937752
捐赠科研通 4374391
什么是DOI,文献DOI怎么找? 2403437
邀请新用户注册赠送积分活动 1396200
关于科研通互助平台的介绍 1368215