Physics-Informed Deep Neural Network for Bearing Prognosis with Multisensory Signals

人工神经网络 一致性(知识库) 可靠性(半导体) 单调函数 降级(电信) 失效物理学 方位(导航) 振动 计算机科学 人工智能 可靠性工程 集合(抽象数据类型) 机器学习 工程类 数学 物理 数学分析 功率(物理) 程序设计语言 电信 量子力学
作者
Xuefeng Chen,Meng Ma,Zhibin Zhao,Zhi Zhai,Zhu Mao
标识
DOI:10.37965/jdmd.2022.54
摘要

Prognosis of bearing is critical to improve the safety, reliability and availability of machinery systems, which provides the health condition assessment and determines how long the machine would work before failure occurs by predicting the remaining useful life (RUL). In order to overcome the drawback of pure data-driven methods and predict RUL accurately, a novel physics-informed deep neural network, named degradation consistency recurrent neural network, is proposed for RUL prediction by integrating the natural degradation knowledge of mechanical components. The degradation is monotonic over the whole-life of bearings, which is characterized by temperature signals. To incorporate this knowledge of monotonic degradation, a positive increment recurrence relationship is introduced to keep the monotonicity. Thus, the proposed model is relatively well-understood and capable to keep the learning process consistent with physical degradation. The effectiveness and merit of the RUL prediction using the proposed method are demonstrated through vibration signals collected from a set of run-to-failure tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助贱小贱采纳,获得10
1秒前
刘帅发布了新的文献求助20
3秒前
4秒前
搜集达人应助希希采纳,获得10
7秒前
7秒前
8秒前
genau000完成签到 ,获得积分10
9秒前
冷静映安完成签到,获得积分10
9秒前
淡淡桐完成签到,获得积分10
10秒前
归尘发布了新的文献求助10
13秒前
科研通AI2S应助徐佳乐采纳,获得10
14秒前
15秒前
Kwanman完成签到,获得积分10
15秒前
HEIKU应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
科研通AI2S应助苑世朝采纳,获得10
16秒前
烟花应助香蕉傲之采纳,获得10
19秒前
希希发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
23秒前
zxy完成签到 ,获得积分10
25秒前
徐佳乐发布了新的文献求助10
25秒前
贱小贱发布了新的文献求助10
26秒前
27秒前
28秒前
秋子发布了新的文献求助10
31秒前
沐沐发布了新的文献求助10
31秒前
米尔的猫发布了新的文献求助10
32秒前
贱小贱完成签到,获得积分10
34秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780310
求助须知:如何正确求助?哪些是违规求助? 3325580
关于积分的说明 10223667
捐赠科研通 3040766
什么是DOI,文献DOI怎么找? 1668988
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648