Graphformer: Adaptive graph correlation transformer for multivariate long sequence time series forecasting

计算机科学 粒度 图形 人工智能 增采样 概括性 编码器 数据挖掘 算法 模式识别(心理学) 机器学习 理论计算机科学 心理学 操作系统 图像(数学) 心理治疗师
作者
Yijie Wang,Hao Long,Linjiang Zheng,Jiaxing Shang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111321-111321 被引量:21
标识
DOI:10.1016/j.knosys.2023.111321
摘要

Accurate long sequence time series forecasting (LSTF) remains a key challenge due to its complex time-dependent nature. Multivariate time series forecasting methods inherently assume that variables are interrelated and that the future state of each variable depends not only on its history but also on other variables. However, most existing methods, such as Transformer, cannot effectively exploit the potential spatial correlation between variables. To cope with the above problems, we propose a Transformer-based LSTF model, called Graphformer, which can efficiently learn complex temporal patterns and dependencies between multiple variables. First, in the encoder's self-attentive downsampling layer, Graphformer replaces the standard convolutional layer with an dilated convolutional layer to efficiently capture long-term dependencies between time series at different granularity levels. Meanwhile, Graphformer replaces the self-attention mechanism with a graph self-attention mechanism that can automatically infer the implicit sparse graph structure from the data, showing better generality for time series without explicit graph structure and learning implicit spatial dependencies between sequences. In addition, Graphformer uses a temporal inertia module to enhance the sensitivity of future time steps to recent inputs, and a multi-scale feature fusion operation to extract temporal correlations at different granularity levels by slicing and fusing feature maps to improve model accuracy and efficiency. Our proposed Graphformer can improve the long sequence time series forecasting accuracy significantly when compared with that of SOTA Transformer-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电纺白白发布了新的文献求助58
1秒前
Owen应助meng采纳,获得10
1秒前
雪小岳发布了新的文献求助10
2秒前
科研通AI5应助云宝采纳,获得10
4秒前
热心的飞风完成签到 ,获得积分10
4秒前
4秒前
完美世界应助执着烧鹅采纳,获得10
4秒前
7秒前
8秒前
多情蓝发布了新的文献求助10
10秒前
liningcen完成签到 ,获得积分10
10秒前
文在否发布了新的文献求助10
10秒前
ceicic发布了新的文献求助30
12秒前
薄荷鸟完成签到,获得积分10
13秒前
13秒前
Dr_an发布了新的文献求助10
13秒前
lshao发布了新的文献求助10
13秒前
13秒前
Omega完成签到,获得积分10
15秒前
陈1完成签到,获得积分10
15秒前
dique3hao完成签到 ,获得积分10
16秒前
18秒前
酷酷妙梦完成签到,获得积分10
18秒前
舒心的青亦完成签到 ,获得积分10
18秒前
追寻地坛发布了新的文献求助10
19秒前
云宝发布了新的文献求助10
19秒前
了尘完成签到,获得积分10
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
HEIKU应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
HEIKU应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
hjyylab应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
24秒前
hanzhipad应助科研通管家采纳,获得10
24秒前
hjyylab应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845801
求助须知:如何正确求助?哪些是违规求助? 3388159
关于积分的说明 10551960
捐赠科研通 3108790
什么是DOI,文献DOI怎么找? 1713127
邀请新用户注册赠送积分活动 824592
科研通“疑难数据库(出版商)”最低求助积分说明 774908