Facial expression recognition based on emotional artificial intelligence for tele-rehabilitation

面部表情 计算机科学 面部表情识别 人工智能 情绪识别 情商 康复 语音识别 情感表达 面部识别系统 模式识别(心理学) 心理学 认知心理学 社会心理学 神经科学
作者
Davide Ciraolo,Maria Fazio,Rocco Salvatore Calabrò,Massimo Villari,Antonio Celesti
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106096-106096 被引量:2
标识
DOI:10.1016/j.bspc.2024.106096
摘要

Tele-rehabilitation aims at increasing clinical outcomes while reducing costs and improving patients' quality of life (QoL). However, two main challenges need to be addressed to ensure its effectiveness: remote motor and cognitive rehabilitation. In this research work, we want to focus on the latter. Our idea is to integrate the concept of Emotional AI into tele-rehabilitation by monitoring the facial expressions of patients during motor rehabilitation exercises. Thus, we can assess the patient's cognitive and emotional state, with the objective of determining the relationship between motor and cognitive rehabilitation outcomes. Therefore, this study considers a Cloud/Edge continuum tele-rehabilitation scenario where a Hospital Cloud interacts with remote rehabilitation and monitoring Edge devices placed in patients' homes and/or rehabilitation centres. Specifically, we want to assess the performance of a Facial Expression Recognition (FER) system that can be deployed at the Edge. To achieve our goal, we employ the MediaPipe suite of libraries, which is optimized to run on low-resource devices. In particular, we used its Face Mesh module that is capable of generating a face mesh (i.e., a set of 3D face points) from an input image. The features of the mesh are then used to train a classifier that can identify the different facial expressions defined in Ekman's model (i.e., angry, fear, happy, sad, surprise, and neutral). In our experiments, we tested several combinations of datasets, face meshes (FMs), face feature maps (FFMs), and classifiers to identify the best-performing solution and demonstrate the applicability of this approach in a tele-rehabilitation environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来来来完成签到,获得积分10
刚刚
刚刚
1秒前
suga发布了新的文献求助10
1秒前
1秒前
香蕉觅云应助开放从波采纳,获得10
1秒前
wanghuihui完成签到,获得积分20
2秒前
科研通AI5应助moonman采纳,获得10
2秒前
aaronpancn发布了新的文献求助10
2秒前
称心太阳发布了新的文献求助10
6秒前
慕青应助土又鸟采纳,获得10
6秒前
zino发布了新的文献求助10
6秒前
关包子发布了新的文献求助10
7秒前
shaoshao86完成签到,获得积分10
7秒前
9秒前
suga完成签到,获得积分20
9秒前
10秒前
123发布了新的文献求助10
14秒前
14秒前
15秒前
直率虔完成签到,获得积分10
16秒前
伶俜完成签到 ,获得积分10
18秒前
谨慎乌完成签到,获得积分10
18秒前
张晓宇关注了科研通微信公众号
18秒前
Rinsana完成签到,获得积分10
18秒前
pluto完成签到 ,获得积分10
18秒前
刘倩雯发布了新的文献求助10
18秒前
orixero应助zxm采纳,获得10
18秒前
19秒前
关包子完成签到,获得积分10
19秒前
20秒前
chenry发布了新的文献求助10
21秒前
哈哈发布了新的文献求助10
22秒前
火星上仰完成签到,获得积分10
22秒前
chuo0004完成签到,获得积分10
23秒前
23秒前
Mifabric完成签到,获得积分10
24秒前
科研通AI5应助123采纳,获得10
25秒前
鱼遇完成签到,获得积分10
28秒前
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836309
求助须知:如何正确求助?哪些是违规求助? 3378623
关于积分的说明 10505359
捐赠科研通 3098262
什么是DOI,文献DOI怎么找? 1706407
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772382