DUCD: Deep Unfolding Convolutional-Dictionary network for pansharpening remote sensing image

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 图像(数学) 深度学习 计算机视觉
作者
Zixu Li,Genji Yuan,Jinjiang Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123589-123589
标识
DOI:10.1016/j.eswa.2024.123589
摘要

The goal of pansharpening methods is to complement the spectral and spatial information contained in Multi-spectral (MS) and panchromatic (PAN) images to obtain the desired High-resolution multispectral (HRMS) image. The existing majority of pansharpening methods either extract feature information separately from the MS image and PAN image, or extract feature information after concatenating the MS image and PAN image. However, the entire extraction process lacks the utilization of complementary information and tends to generate redundant information, thereby leading to the loss of certain important information during the extraction process, which in turn affects the overall performance. In order to better utilize the complementary information between the MS image and PAN image and enhance the interpretability of the network, we propose the Deep Unfolding Convolutional-Dictionary Network (DUCD) for pansharpening in this paper. This network fully integrates complementary information between the MS image and PAN image to generate the final fused image. The entire network structure consists of two parts: The encoder and the decoder. In the encoder part of the network, we clarify the common and unique feature information between MS and PAN images by constructing an observation model. Simultaneously, we use the approximate gradient algorithm to continuously optimize the model and iteratively unfold it into a deep network structure. In the decoder part of the network, we concatenate the obtained common and specific information from MS and PAN images and pass them through convolutional and activation layers. Subsequently, they are input into the introduced Frequency Domain-based Transformer (FDT) module and an information-lossless inversible neural network(INN). This provides a more efficient method for establishing long-range dependency relationships between feature extraction and feature fusion. To demonstrate the effectiveness of our proposed method, we conduct extensive experiments on three benchmark datasets QB, GF2 and WV3. Experimental results show that our method outperforms the current SOTA Pansharpening methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wqy完成签到 ,获得积分10
1秒前
李佳慧完成签到,获得积分10
1秒前
biov完成签到,获得积分10
2秒前
淳于白凝完成签到,获得积分10
2秒前
illusion完成签到,获得积分10
2秒前
wanci应助疯狂的水桃采纳,获得10
3秒前
zkai完成签到,获得积分10
3秒前
独特的凝云完成签到 ,获得积分10
3秒前
有一天完成签到 ,获得积分10
3秒前
丸子完成签到 ,获得积分10
4秒前
阿衡发布了新的文献求助10
5秒前
有魅力强炫完成签到,获得积分10
6秒前
LXX-k完成签到,获得积分10
6秒前
6秒前
坚定的草丛完成签到,获得积分10
7秒前
艾七七完成签到,获得积分10
8秒前
舒服的灵安完成签到 ,获得积分10
8秒前
幽默不愁完成签到,获得积分10
8秒前
8秒前
阿伦完成签到,获得积分10
8秒前
cccc完成签到,获得积分10
9秒前
9秒前
俏皮的芝麻完成签到,获得积分10
10秒前
高大的水壶完成签到,获得积分10
10秒前
陶醉如柏完成签到,获得积分10
10秒前
李振博完成签到 ,获得积分10
11秒前
坚强的铅笔完成签到 ,获得积分10
11秒前
浮槎完成签到,获得积分10
11秒前
11秒前
spring完成签到 ,获得积分10
12秒前
阿衡完成签到,获得积分10
12秒前
夕阳发布了新的文献求助10
12秒前
安玖完成签到,获得积分10
13秒前
洋山芋完成签到,获得积分10
14秒前
ee发布了新的文献求助10
14秒前
我有一只羊完成签到,获得积分10
15秒前
Owen应助小申采纳,获得10
16秒前
春锅锅完成签到,获得积分10
16秒前
大砖华发布了新的文献求助20
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804329
求助须知:如何正确求助?哪些是违规求助? 3349122
关于积分的说明 10341845
捐赠科研通 3065225
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808620
科研通“疑难数据库(出版商)”最低求助积分说明 764620