分割
计算机科学
解码方法
人工智能
水准点(测量)
棱锥(几何)
残余物
变压器
掷骰子
编码(内存)
模式识别(心理学)
编码(集合论)
增采样
计算机视觉
图像(数学)
算法
数学
物理
几何学
量子力学
电压
集合(抽象数据类型)
大地测量学
程序设计语言
地理
作者
Debesh Jha,Nikhil Kumar Tomar,Koushik Biswas,Görkem Durak,Alpay Medetalibeyoğlu,Matthew Antalek,Yury Velichko,Daniela P. Ladner,Amir A. Borhani,Ulaş Bağcı
出处
期刊:Cornell University - arXiv
日期:2024-01-17
被引量:1
标识
DOI:10.48550/arxiv.2401.09630
摘要
Accurate liver segmentation from CT scans is essential for effective diagnosis and treatment planning. Computer-aided diagnosis systems promise to improve the precision of liver disease diagnosis, disease progression, and treatment planning. In response to the need, we propose a novel deep learning approach, \textit{\textbf{PVTFormer}}, that is built upon a pretrained pyramid vision transformer (PVT v2) combined with advanced residual upsampling and decoder block. By integrating a refined feature channel approach with a hierarchical decoding strategy, PVTFormer generates high quality segmentation masks by enhancing semantic features. Rigorous evaluation of the proposed method on Liver Tumor Segmentation Benchmark (LiTS) 2017 demonstrates that our proposed architecture not only achieves a high dice coefficient of 86.78\%, mIoU of 78.46\%, but also obtains a low HD of 3.50. The results underscore PVTFormer's efficacy in setting a new benchmark for state-of-the-art liver segmentation methods. The source code of the proposed PVTFormer is available at \url{https://github.com/DebeshJha/PVTFormer}.
科研通智能强力驱动
Strongly Powered by AbleSci AI