Model-based analysis of the incidence trends and transmission dynamics of COVID-19 associated with the Omicron variant in representative cities in China

爆发 人口学 自回归积分移动平均 医学 入射(几何) 传输(电信) 2019年冠状病毒病(COVID-19) 拐点 统计 人口 中国 时间序列 环境卫生 地理 疾病 内科学 数学 病毒学 计算机科学 电信 几何学 社会学 传染病(医学专业) 考古
作者
Yifei Ma,Shujun Xu,Yuxin Luo,Jiantao Li,Lijian Lei,Lu H,Tong Wang,Hongmei Yu,Jun Xie
出处
期刊:BMC Public Health [BioMed Central]
卷期号:23 (1) 被引量:4
标识
DOI:10.1186/s12889-023-17327-7
摘要

Abstract Background In 2022, Omicron outbreaks occurred at multiple sites in China. It is of great importance to track the incidence trends and transmission dynamics of coronavirus disease 2019 (COVID-19) to guide further interventions. Methods Given the population size, economic level and transport level similarities, two groups of outbreaks (Shanghai vs. Chengdu and Sanya vs. Beihai) were selected for analysis. We developed the SEAIQRD, ARIMA, and LSTM models to seek optimal modeling techniques for waves associated with the Omicron variant regarding data predictive performance and mechanism transmission dynamics, respectively. In addition, we quantitatively modeled the impacts of different combinations of more stringent interventions on the course of the epidemic through scenario analyses. Results The best-performing LSTM model showed better prediction accuracy than the best-performing SEAIQRD and ARIMA models in most cases studied. The SEAIQRD model had an absolute advantage in exploring the transmission dynamics of the outbreaks. Regardless of the time to inflection point or the time to R t curve below 1.0, Shanghai was later than Chengdu (day 46 vs. day 12/day 54 vs. day 14), and Sanya was later than Beihai (day 16 vs. day 12/day 20 vs. day 16). Regardless of the number of peak cases or the cumulative number of infections, Shanghai was higher than Chengdu (34,350 vs. 188/623,870 vs. 2,181), and Sanya was higher than Beihai (1,105 vs. 203/16,289 vs. 3,184). Scenario analyses suggested that upgrading control level in advance, while increasing the index decline rate and quarantine rate, were of great significance for shortening the time to peak and R t below 1.0, as well as reducing the number of peak cases and final affected population. Conclusions The LSTM model has great potential for predicting the prevalence of Omicron outbreaks, whereas the SEAIQRD model is highly effective in revealing their internal transmission mechanisms. We recommended the use of joint interventions to contain the spread of the virus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elsa完成签到,获得积分10
刚刚
香蕉觅云应助泽松采纳,获得10
刚刚
Sylvia完成签到 ,获得积分10
1秒前
chen完成签到,获得积分10
3秒前
DTS完成签到,获得积分10
3秒前
风中的哈密瓜完成签到,获得积分10
3秒前
wg发布了新的文献求助10
3秒前
wos完成签到,获得积分10
3秒前
彭于晏应助爆学的狗采纳,获得10
3秒前
哈哈发布了新的文献求助10
4秒前
5秒前
大力完成签到,获得积分10
5秒前
wanci应助王里走采纳,获得10
6秒前
DTS发布了新的文献求助10
6秒前
nightmare发布了新的文献求助10
7秒前
Orange应助crowd_lpy采纳,获得10
7秒前
Ava应助山雀采纳,获得10
10秒前
刘盈完成签到,获得积分10
10秒前
雍凡白发布了新的文献求助10
10秒前
阿文完成签到 ,获得积分10
11秒前
11秒前
科目三应助nightmare采纳,获得10
11秒前
12秒前
12秒前
12秒前
一星完成签到,获得积分10
12秒前
13秒前
wyb完成签到 ,获得积分10
15秒前
15秒前
wg完成签到,获得积分10
15秒前
16秒前
SciGPT应助黎明采纳,获得10
17秒前
17秒前
今后应助22222采纳,获得10
17秒前
18秒前
云知关注了科研通微信公众号
18秒前
18秒前
wxhwyys发布了新的文献求助10
18秒前
tjfwg完成签到,获得积分10
18秒前
水上汀州完成签到,获得积分10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640