ProkBERT family: genomic language models for microbiome applications

计算机科学 适应性 鉴定(生物学) 机器学习 人工智能 背景(考古学) 微生物群 计算生物学 数据科学 生物 生物信息学 生态学 古生物学
作者
Balázs Ligeti,István Szepesi-Nagy,Babett Bodnár,Noémi Ligeti-Nagy,János Juhász
出处
期刊:Frontiers in Microbiology [Frontiers Media SA]
卷期号:14: 1331233-1331233 被引量:18
标识
DOI:10.3389/fmicb.2023.1331233
摘要

Background In the evolving landscape of microbiology and microbiome analysis, the integration of machine learning is crucial for understanding complex microbial interactions, and predicting and recognizing novel functionalities within extensive datasets. However, the effectiveness of these methods in microbiology faces challenges due to the complex and heterogeneous nature of microbial data, further complicated by low signal-to-noise ratios, context-dependency, and a significant shortage of appropriately labeled datasets. This study introduces the ProkBERT model family, a collection of large language models, designed for genomic tasks. It provides a generalizable sequence representation for nucleotide sequences, learned from unlabeled genome data. This approach helps overcome the above-mentioned limitations in the field, thereby improving our understanding of microbial ecosystems and their impact on health and disease. Methods ProkBERT models are based on transfer learning and self-supervised methodologies, enabling them to use the abundant yet complex microbial data effectively. The introduction of the novel Local Context-Aware (LCA) tokenization technique marks a significant advancement, allowing ProkBERT to overcome the contextual limitations of traditional transformer models. This methodology not only retains rich local context but also demonstrates remarkable adaptability across various bioinformatics tasks. Results In practical applications such as promoter prediction and phage identification, the ProkBERT models show superior performance. For promoter prediction tasks, the top-performing model achieved a Matthews Correlation Coefficient (MCC) of 0.74 for E. coli and 0.62 in mixed-species contexts. In phage identification, ProkBERT models consistently outperformed established tools like VirSorter2 and DeepVirFinder, achieving an MCC of 0.85. These results underscore the models' exceptional accuracy and generalizability in both supervised and unsupervised tasks. Conclusions The ProkBERT model family is a compact yet powerful tool in the field of microbiology and bioinformatics. Its capacity for rapid, accurate analyses and its adaptability across a spectrum of tasks marks a significant advancement in machine learning applications in microbiology. The models are available on GitHub ( https://github.com/nbrg-ppcu/prokbert ) and HuggingFace ( https://huggingface.co/nerualbioinfo ) providing an accessible tool for the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laity完成签到,获得积分10
刚刚
科研发布了新的文献求助10
1秒前
拉长的诺言完成签到,获得积分10
2秒前
2333发布了新的文献求助30
2秒前
3秒前
3秒前
5秒前
5秒前
5秒前
5秒前
干昕慈完成签到,获得积分10
5秒前
默幻弦完成签到,获得积分10
6秒前
Aimeee完成签到,获得积分10
6秒前
英姑应助水123采纳,获得10
6秒前
学术草履虫完成签到,获得积分10
7秒前
qiuxiali123发布了新的文献求助10
7秒前
7秒前
7秒前
求助人员发布了新的文献求助10
7秒前
lzq完成签到,获得积分10
8秒前
8秒前
陈钧发布了新的文献求助10
9秒前
美少女壮士完成签到,获得积分10
9秒前
路路通发布了新的文献求助10
10秒前
我是老大应助sty采纳,获得10
10秒前
fcyyc发布了新的文献求助10
10秒前
11秒前
香蕉觅云应助一一采纳,获得10
11秒前
香菜碗里来完成签到,获得积分10
11秒前
lzq发布了新的文献求助10
12秒前
13秒前
orixero应助ZZH采纳,获得10
13秒前
枳实完成签到,获得积分10
14秒前
土大弓虽完成签到 ,获得积分10
14秒前
裴彤完成签到,获得积分20
14秒前
15秒前
清欲完成签到,获得积分20
15秒前
绿豆冰完成签到,获得积分10
17秒前
海燕发布了新的文献求助10
18秒前
风行九州发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600339
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841190
捐赠科研通 4676319
什么是DOI,文献DOI怎么找? 2538694
邀请新用户注册赠送积分活动 1505750
关于科研通互助平台的介绍 1471186