亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Monocular Depth Estimation With Positional Shift Depth Variance and Adaptive Disparity Quantization

人工智能 计算机视觉 量化(信号处理) 计算机科学 单眼 模式识别(心理学) 数学
作者
Juan Luis Gonzalez Bello,Jae-Ho Moon,Munchurl Kim
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2074-2089 被引量:2
标识
DOI:10.1109/tip.2024.3374045
摘要

Recently, attempts to learn the underlying 3D structures of a scene from monocular videos in a fully self-supervised fashion have drawn much attention. One of the most challenging aspects of this task is to handle independently moving objects as they break the rigid-scene assumption. In this paper, we show for the first time that pixel positional information can be exploited to learn SVDE (Single View Depth Estimation) from videos. The proposed moving object (MO) masks, which are induced by the depth variance to shifted positional information (SPI) and are referred to as 'SPIMO' masks, are highly robust and consistently remove independently moving objects from the scenes, allowing for robust and consistent learning of SVDE from videos. Additionally, we introduce a new adaptive quantization scheme that assigns the best per-pixel quantization curve for depth discretization, improving the fine granularity and accuracy of the final aggregated depth maps. Finally, we employ existing boosting techniques in a new way that self-supervises moving object depths further. With these features, our pipeline is robust against moving objects and generalizes well to high-resolution images, even when trained with small patches, yielding state-of-the-art (SOTA) results with four- to eight-fold fewer parameters than the previous SOTA techniques that learn from videos. We present extensive experiments on KITTI and CityScapes that show the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得30
17秒前
35秒前
Ryoman完成签到,获得积分10
36秒前
37秒前
yyy发布了新的文献求助10
42秒前
Owen应助JY采纳,获得10
54秒前
55秒前
1分钟前
JY发布了新的文献求助10
1分钟前
今后应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助david采纳,获得10
2分钟前
帅气惜霜完成签到 ,获得积分10
2分钟前
xiaolang2004完成签到,获得积分10
2分钟前
2分钟前
jiaobu发布了新的文献求助10
2分钟前
annnnnnd完成签到 ,获得积分10
2分钟前
赘婿应助jiaobu采纳,获得10
3分钟前
eccentric完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
科研通AI5应助Tia采纳,获得10
5分钟前
5分钟前
性静H情逸发布了新的文献求助10
5分钟前
性静H情逸完成签到,获得积分10
5分钟前
wbs13521完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
baobeikk完成签到 ,获得积分10
7分钟前
双手外科结完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
所所应助积极的凝海采纳,获得10
9分钟前
NaCl完成签到 ,获得积分10
9分钟前
开心每一天完成签到 ,获得积分10
10分钟前
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340629
关于积分的说明 10300837
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762563