Liquid-filled pipeline leak detection and localization based on multi-scale residual networks

残余物 计算机科学 泄漏 管道(软件) 卷积神经网络 核(代数) 泄漏(经济) 人工智能 检漏 卷积(计算机科学) 模式识别(心理学) 算法 人工神经网络 工程类 数学 宏观经济学 经济 程序设计语言 组合数学 环境工程
作者
Si-Liang Zhao,Linhui Zhou,Shaogang Liu,Liqiang Dong,Zhou Hong,Dan Zhao,Chang Guo
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055012-055012 被引量:6
标识
DOI:10.1088/1361-6501/ad2740
摘要

Abstract Effective ways to improve the accuracy of liquid-filled pipeline leak detection are one of the key issues that need to be addressed urgently in a conservation-oriented society. Recently, pipeline leak detection methods based on deep learning have developed rapidly. To improve the learning ability of convolutional neural network for pipeline leak signal features and leak detection accuracy, a multi-scale residual networks (MSRNs) model is proposed in this paper for liquid-filled pipeline leak detection and localization. The model uses convolutional kernels of different scales to extract multiscale features of pipeline leakage signals based on deep residual networks (DRNs) and uses fully connected layers to fuse the features, thus improving the accuracy of pipeline leakage detection and localization. Among them, the large convolution kernel can acquire the low-frequency information of the signal due to its sizable perceptual field, the medium convolution kernel can capture the local and global features of the signal, and the small convolution kernel is more sensitive to the high-frequency information of the signal. Meanwhile, a pipeline leakage test platform is built to evaluate the proposed model. The test results show that the accuracy of leak detection and localization of MSRN model is 98.3%, which is better than that of single-scale DRN model. In addition, the proposed MSRN model is verified to have good generalization and noise immunity through testing and analyzing the leakage signals under different pressures and background noises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐小徐发布了新的文献求助10
刚刚
小巧静珊完成签到,获得积分20
1秒前
烟花应助诚心水蓝采纳,获得10
1秒前
俊逸千山发布了新的文献求助10
1秒前
大个应助清水采纳,获得10
2秒前
i7完成签到,获得积分10
2秒前
追寻的梦凡完成签到,获得积分10
2秒前
ningwu发布了新的文献求助10
3秒前
3秒前
倔强的大萝卜完成签到,获得积分0
3秒前
顾矜应助12345采纳,获得10
4秒前
王成豪完成签到,获得积分20
5秒前
llllll发布了新的文献求助10
5秒前
大个应助徐小徐采纳,获得10
5秒前
5秒前
1111完成签到,获得积分10
6秒前
Yang发布了新的文献求助100
7秒前
顾矜应助蓁蓁采纳,获得10
7秒前
陈辰完成签到,获得积分10
7秒前
缥缈烙完成签到,获得积分10
8秒前
8秒前
汪少侠完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
顾矜应助飘渺的尘埃采纳,获得10
9秒前
9秒前
Orange应助酥酥采纳,获得10
10秒前
10秒前
10秒前
曹楠发布了新的文献求助10
11秒前
打打应助thomas采纳,获得10
11秒前
11秒前
姜姗完成签到,获得积分10
11秒前
诚心若男发布了新的文献求助30
11秒前
完美世界应助chenlina采纳,获得10
11秒前
科研通AI2S应助wd采纳,获得10
11秒前
hhzhangf完成签到,获得积分10
11秒前
占博涛发布了新的文献求助10
13秒前
dfwm完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001747
求助须知:如何正确求助?哪些是违规求助? 4246864
关于积分的说明 13231103
捐赠科研通 4045670
什么是DOI,文献DOI怎么找? 2213151
邀请新用户注册赠送积分活动 1223362
关于科研通互助平台的介绍 1143663