Particles caulked by built-in high stiffness frame with fast ion transport capability: A two-pronged approach to solve chemo-mechanical failure for high-performance Ni-rich cathode materials

阴极 刚度 材料科学 电解质 锂离子电池 压力(语言学) 复合材料 电极 电池(电) 工程类 电气工程 化学 功率(物理) 物理 语言学 哲学 物理化学 量子力学
作者
Qi Shi,Feng Wu,Haoyu Wang,Jinyang Dong,Yun Lu,Bin Zhang,Ping Zhang,Jinzhong Liu,Qiyu Zhang,Yuefeng Su,Lai Chen
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:485: 150099-150099 被引量:3
标识
DOI:10.1016/j.cej.2024.150099
摘要

Nickel-rich cathode among the state-of-the-art cathode materials for lithium-ion batteries suffers from serious capacity decay ascribed to parasitic cathode-electrolyte reactions, which is associated with its chemo-mechanical instability including lattice distortion and particle disconnections. To solve this critical stress concentration-transmission related failure, herein the high stiffness Li2SiO3 with fast ion transport capability is caulked into grain boundaries of LiNi0.8Co0.1Mn0.1O2 secondary particles to build a holistic frame with two-pronged function: The caulked Li+-conductive fillings could not only mitigate the interfacial degradation and accelerate lithium ion diffusion, but more importantly, within the high Young's modulus Li2SiO3 frame, local stress accumulation during electrochemical cycling could be effectively dissipated to enable stress field homogenization, thus relieving stress accumulation and reinforcing particle integrity. Consequently, the engineered cathode exhibits superior cycling stability with negligible capacity fading after 100 cycles under 1C. The impressively improved cycling and rate performance originate from the suppression of microcrack and of interfacial side reactions on grain boundaries. We demonstrate that the idea of caulking high stiffness frame to rapidly dissipate stress could provide smart solutions for similar chemo-mechanically susceptible electrode materials towards building more advanced high energy batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
学术laji完成签到 ,获得积分10
2秒前
上官若男应助董sir采纳,获得10
3秒前
彭于晏应助霍冰旋采纳,获得10
5秒前
zxr完成签到,获得积分10
5秒前
8秒前
8秒前
fangyifang发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Holland应助科研通管家采纳,获得30
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
ding应助binbin采纳,获得10
14秒前
归尘发布了新的文献求助10
15秒前
东东发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
kk发布了新的文献求助10
18秒前
流沙完成签到,获得积分20
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323395
关于积分的说明 10214380
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304