微塑料
氧化应激
代谢组
转录组
代谢组学
生物
炎症
毒性
生物化学
生物信息学
内科学
生态学
免疫学
医学
基因
基因表达
作者
Jian Zheng,Congjun Li,Xiaodong Zheng
标识
DOI:10.1016/j.envpol.2022.120480
摘要
Microplastics are ubiquitous in the aquatic and terrestrial ecosystem, increasingly becoming a serious concern for aquatic organism health. However, information regarding the effects of microplastics on cephalopods is remain limited to date. Amphioctopus fangsiao, an important economic species in cephalopods, can serve as a potential indicator of environmental pollution due to its short life expectancy and high metabolic rates. Here, to explore the toxic effects during the microplastic stress response, we analyzed the growth performance, histopathological damage, oxidative stress biomarkers, metabolomic and transcriptomic response in digestive gland of A. fangsiao under different concentrations (0, 100 and 1000 μg/L) of commercial polystyrene microplastics (MPS) exposure (5 μm, sphere) for 21 days. The results showed that MPS exerted a huge influence on the growth performance of A. fangsiao. The oxidative stress and inflammation in digestive gland of A. fangsiao were also detected after exposure to MPS. In addition, most of the altered metabolites observed in the metabolic analysis were related to inflammation, oxidative stress and glucolipid metabolism. Transcriptome analysis detected the differentially expressed genes (DEGs) and the significantly enriched KEGG pathways associated with glycolipid metabolism, inflammation and DNA damage. Collectively, our results indicate that excessive environmental microplastic exposure will cause toxicity damage and then initiate the detoxification mechanism in A. fangsiao digestive gland to maintain homeostasis. This study revealed that microplastic can cause adverse consequences on cephalopods, providing novel insights into the toxicological effect of microplastic exposure.
科研通智能强力驱动
Strongly Powered by AbleSci AI