Reliability Analysis of RC Slab-Column Joints under Punching Shear Load Using a Machine Learning-Based Surrogate Model

结构工程 厚板 冲孔 人工神经网络 均方误差 随机森林 可靠性(半导体) 支持向量机 计算机科学 工程类 机器学习 数学 统计 机械工程 量子力学 功率(物理) 物理
作者
Lulu Shen,Yuanxie Shen,Shixue Liang
出处
期刊:Buildings [MDPI AG]
卷期号:12 (10): 1750-1750 被引量:25
标识
DOI:10.3390/buildings12101750
摘要

Reinforced concrete slab-column structures, despite their advantages such as architectural flexibility and easy construction, are susceptible to punching shear failure. In addition, punching shear failure is a typical brittle failure, which introduces difficulties in assessing the functionality and failure probability of slab-column structures. Therefore, the prediction of punching shear resistance and corresponding reliability analysis are critical issues in the design of reinforced RC slab-column structures. In order to enhance the computational efficiency of the reliability analysis of reinforced concrete (RC) slab-column joints, a database containing 610 experimental data is used for machine learning (ML) modelling. According to the nonlinear mapping between the selected seven input variables and the punching shear resistance of slab-column joints, four ML models, such as artificial neural network (ANN), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost) are established. With the assistance of three performance measures, such as root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2), XGBoost is selected as the best prediction model; its RMSE, MAE, and R2 are 32.43, 19.51, and 0.99, respectively. Such advantages are also reflected in the comparison with the five empirical models introduced in this paper. The prediction process of XGBoost is visualized by SHapley Additive exPlanation (SHAP); the importance sorting and feature dependency plots of the input variables explain the prediction process globally. Furthermore, this paper adopts Monte Carlo simulation with a machine learning-based surrogate model (ML-MCS) to calibrate the reliability of slab-column joints in a real engineering example. A total of 1,000,000 samples were obtained through random sampling, and the reliability index β of this practical building was calculated by Monte Carlo simulation. Results demonstrate that the target reliability index requirements under design provisions can be achieved. The sensitivity analysis of stochastic variables was then conducted, and the impact of that analysis on structural reliability was deeply examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超越自我4641关注了科研通微信公众号
3秒前
6秒前
飞翔的鸣完成签到,获得积分0
11秒前
Jodie发布了新的文献求助10
13秒前
RR完成签到 ,获得积分10
13秒前
不安枕头完成签到 ,获得积分10
14秒前
hy完成签到,获得积分10
14秒前
看不懂完成签到 ,获得积分10
16秒前
18秒前
慕青应助二次元喵酱采纳,获得10
23秒前
M42Y发布了新的文献求助50
23秒前
24秒前
叔克发布了新的文献求助10
25秒前
秦罗敷应助积极的夏天采纳,获得10
25秒前
FashionBoy应助caixiaoz采纳,获得10
28秒前
乐乐应助吉吉国王饲养员采纳,获得30
29秒前
29秒前
29秒前
31秒前
31秒前
李爱国应助Asuna采纳,获得10
38秒前
41秒前
Ava应助风趣绮烟采纳,获得10
41秒前
43秒前
田园镇完成签到 ,获得积分10
46秒前
48秒前
49秒前
范1发布了新的文献求助10
51秒前
51秒前
54秒前
Asuna发布了新的文献求助10
55秒前
乐乐应助科研通管家采纳,获得10
56秒前
彭于晏应助科研通管家采纳,获得10
56秒前
Akim应助科研通管家采纳,获得10
57秒前
隐形曼青应助科研通管家采纳,获得10
57秒前
英俊的铭应助科研通管家采纳,获得30
57秒前
57秒前
彭于晏应助科研通管家采纳,获得10
57秒前
科研菜j应助科研通管家采纳,获得20
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566