Artificial Intelligence in Predicting Postpartum Hemorrhage in Twin Pregnancies Undergoing Cesarean Section

产科 章节(排版) 医学 双胎妊娠 怀孕 妊娠期 计算机科学 生物 遗传学 操作系统
作者
Şükran Doğru,Huriye Ezveci,Fatih Akkuş,Pelin Bahçeci,Fikriye Karanfil Yaman,Ali Acar
出处
期刊:Twin Research and Human Genetics [Cambridge University Press]
卷期号:: 1-7 被引量:1
标识
DOI:10.1017/thg.2024.48
摘要

Abstract This study aimed to create a risk prediction model with artificial intelligence (AI) to identify patients at higher risk of postpartum hemorrhage using perinatal characteristics that may be associated with later postpartum hemorrhage (PPH) in twin pregnancies that underwent cesarean section. The study was planned as a retrospective cohort study at University Hospital. All twin cesarean deliveries were categorized into two groups: those with and without PPH. Using the perinatal characteristics of the cases, four different machine learning classifiers were created: Logistic regression (LR), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP). LR, RF, and SVM models were created a second time by including class weights to manage the underlying imbalances in the data. A total of 615 twin pregnancies were included in the study. There were 150 twin pregnancies with PPH and 465 without PPH. Dichorionity, PAS, and placenta previa were significantly higher in the PPH-positive group ( p = .045, p = .004, p = .001 respectively). In our model, LR with class weight was the best model with the highest negative predictive value. The AUC in our LR with class weight model was %75.12 with an accuracy of 70.73%, a PPV of 47.92%, and an NPV of 85.33% in our data. Although the application of machine learning to create predictive models using clinical risk factors and our model’s 70% accuracy rate are encouraging, it is not sufficient. Machine learning modeling needs further study and validation before being incorporated into clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx完成签到,获得积分10
刚刚
tengfei完成签到 ,获得积分10
刚刚
吃饱再睡完成签到 ,获得积分10
刚刚
善良的金鱼完成签到,获得积分10
刚刚
十二完成签到 ,获得积分10
1秒前
李白完成签到,获得积分10
1秒前
斯文败类应助tingting采纳,获得10
2秒前
在水一方发布了新的文献求助10
2秒前
5秒前
清新的万天完成签到,获得积分10
5秒前
小皮皮完成签到,获得积分10
5秒前
碳土不凡完成签到 ,获得积分10
5秒前
ming830完成签到,获得积分10
7秒前
Nereus完成签到 ,获得积分10
7秒前
samuel完成签到,获得积分10
7秒前
SC完成签到 ,获得积分10
7秒前
弹指一挥间完成签到 ,获得积分10
8秒前
miro完成签到,获得积分10
8秒前
陈宗琴完成签到,获得积分10
8秒前
在水一方完成签到,获得积分10
9秒前
机灵纸鹤完成签到 ,获得积分10
10秒前
钰钰儿完成签到,获得积分10
10秒前
米鼓完成签到 ,获得积分10
11秒前
Ares完成签到,获得积分10
11秒前
骑着蚂蚁追大象完成签到,获得积分10
12秒前
jidou1011完成签到,获得积分10
12秒前
12秒前
桐桐应助学习鱼采纳,获得10
13秒前
三层楼高完成签到,获得积分10
14秒前
马成双完成签到 ,获得积分10
15秒前
赶紧大聪明完成签到,获得积分10
15秒前
teamguichu完成签到 ,获得积分10
16秒前
hj123完成签到,获得积分10
17秒前
111完成签到 ,获得积分10
18秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
18秒前
yhy完成签到 ,获得积分10
18秒前
20秒前
任性完成签到,获得积分10
20秒前
线条完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5009052
求助须知:如何正确求助?哪些是违规求助? 4251399
关于积分的说明 13244541
捐赠科研通 4052381
什么是DOI,文献DOI怎么找? 2216879
邀请新用户注册赠送积分活动 1226657
关于科研通互助平台的介绍 1148490