Boosting the melting point record to 4431 K: Simulated with machine learning potential at SCAN accuracy

液相线 熔点 相图 热力学 材料科学 同熔 索里达 相(物质) 冶金 化学 合金 物理 复合材料 有机化学
作者
Fu‐Zhi Dai,Yifen Xu,Jidong Hu,Shipeng Zhu,Xinfu Gu
出处
期刊:Journal of the American Ceramic Society [Wiley]
标识
DOI:10.1111/jace.20356
摘要

Abstract Carbides or carbonitrides in the Hf‐Ta‐C‐N system are believed to exhibit the highest melting point, attracting significant interest for both scientific and engineering means. In this study, we developed a machine learning potential model for Hf‐Ta‐C‐N carbonitrides at Strongly Constrained and Appropriately Normed (SCAN) semi‐local density functional accuracy. In addition, we proposed a novel critical equilibrium method for simulating melting points. Utilizing these two advancements, we successfully simulated solidus and liquidus lines in phase diagrams of HfC 1− x and TaC 1− x , demonstrating excellent agreement with experimental results. We then discovered new compounds with even higher melting points by employing Bayesian global optimization. The compound with the highest melting point found is Hf 0.956 Ta 0.044 C 0.600 N 0.338 , which has a melting point of 4431 K, surpassing the experimental record by approximately 150 K. We conducted an in‐depth thermodynamic analysis in the HfC–HfN pseudo‐binary system and found that the addition of N has a dual effect: on the one hand, it increases the enthalpy change due to melting () with a maximum value at ∼15 at% N in the anion site; on the other hand, it reduces the entropy of the liquid phase and increases the entropy of the solid phase (). This results in a maximum melting point at a specific N content. Furthermore, we discussed the effects of N alloying on thermal expansion and mechanical properties, which are invaluable for the ongoing development of carbonitrides. This research not only advances our understanding of Hf‐Ta‐C‐N carbonitrides but also provides a promising framework for future materials research and the development of materials with exceptional properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虾条完成签到 ,获得积分10
刚刚
谷粱靖完成签到,获得积分10
刚刚
1秒前
1秒前
科目三应助ling采纳,获得30
1秒前
万能图书馆应助结实寒梦采纳,获得30
3秒前
Coco完成签到,获得积分10
3秒前
zzfplay完成签到,获得积分10
4秒前
yy发布了新的文献求助10
5秒前
小巧忆翠完成签到,获得积分10
5秒前
阿昔发布了新的文献求助10
5秒前
wanci应助灰原采纳,获得10
5秒前
科研通AI2S应助柔弱碧菡采纳,获得10
7秒前
SYLH应助8464368采纳,获得10
7秒前
活泼平凡发布了新的文献求助10
8秒前
玉玉发布了新的文献求助10
8秒前
顾矜应助烂漫诗兰采纳,获得30
8秒前
英勇梦安发布了新的文献求助10
9秒前
小巧忆翠发布了新的文献求助10
10秒前
dxftx完成签到,获得积分10
10秒前
细腻的山水完成签到 ,获得积分10
10秒前
踏实的酸奶完成签到,获得积分10
10秒前
11秒前
caipengju完成签到,获得积分20
12秒前
八二力完成签到 ,获得积分10
12秒前
丘比特应助wangqing采纳,获得10
12秒前
张小美完成签到,获得积分20
13秒前
vivian完成签到 ,获得积分10
14秒前
14秒前
14秒前
SQ发布了新的文献求助10
14秒前
听听看完成签到,获得积分10
15秒前
玥来玥好完成签到,获得积分10
15秒前
15秒前
15秒前
minus发布了新的文献求助10
16秒前
16秒前
Explorer给司徒文青的求助进行了留言
16秒前
17秒前
NexusExplorer应助钩子89采纳,获得10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786195
求助须知:如何正确求助?哪些是违规求助? 3331852
关于积分的说明 10252592
捐赠科研通 3047153
什么是DOI,文献DOI怎么找? 1672437
邀请新用户注册赠送积分活动 801287
科研通“疑难数据库(出版商)”最低求助积分说明 760140