已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A small object detection model in aerial images based on CPDD-YOLOv8

计算机科学 对象(语法) 人工智能 计算机图形学(图像) 计算机视觉 地图学 地理
作者
Jingyang Wang,Jiayao Gao,Bo Zhang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:7
标识
DOI:10.1038/s41598-024-84938-4
摘要

Aerial images can cover a wide area and capture rich scene information. These images are often taken from a high altitude and contain many small objects. It is difficult to detect small objects accurately because their features are not obvious and are susceptible to background interference. The CPDD-YOLOv8 is proposed to improve the performance of small object detection. Firstly, we propose the C2fGAM structure, which integrates the Global Attention Mechanism (GAM) into the C2f structure of the backbone so that the model can better understand the overall semantics of the images. Secondly, a detection layer named P2 is added to extract the shallow features. Thirdly, a new DSC2f structure is proposed, which uses Dynamic Snake Convolution (DSConv) to take the place of the first standard Conv of Bottleneck in the C2f structure, so that the model can adapt to different inputs more effectively. Finally, the Dynamic Head (DyHead), which integrates multiple attention mechanisms, is used in the head to assign different weights to different feature layers. To prove the effectiveness of the CPDD-YOLOv8, we carry out ablation and comparison experiments on the VisDrone2019 dataset. Ablation experiments show that all the improved and added modules in CPDD-YOLOv8 are effective. Comparative experiments suggest that the mAP of CPDD-YOLOv8 is higher than the other seven comparison models. The mAP@0.5 of this model reaches 41%, which is 6.9% higher than that of YOLOv8. The CPDD-YOLOv8's small object detection rate is improved by 13.1%. The generalizability of the CPDD-YOLOv8 model is verified on the WiderPerson, VOC_MASK and SHWD datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thien发布了新的文献求助10
刚刚
wll发布了新的文献求助10
1秒前
流香发布了新的文献求助30
1秒前
程艾影发布了新的文献求助10
3秒前
3秒前
4秒前
汤圆滚滚发布了新的文献求助10
5秒前
栖迟发布了新的文献求助10
6秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
bkagyin应助凡fan采纳,获得10
9秒前
可爱的函函应助哈哈采纳,获得10
9秒前
9秒前
Orange应助li采纳,获得10
9秒前
GKain发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
哈哈完成签到 ,获得积分10
13秒前
JamesPei应助栖迟采纳,获得10
14秒前
14秒前
果奶绝甜发布了新的文献求助10
16秒前
于雪晴发布了新的文献求助10
17秒前
17秒前
Xee发布了新的文献求助10
17秒前
17秒前
千葉发布了新的文献求助10
18秒前
无心的笑蓝完成签到,获得积分10
18秒前
彭于晏应助哭泣的若翠采纳,获得100
18秒前
19秒前
22秒前
24秒前
24秒前
天天快乐应助害怕采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076248
求助须知:如何正确求助?哪些是违规求助? 4295778
关于积分的说明 13385599
捐赠科研通 4117660
什么是DOI,文献DOI怎么找? 2254921
邀请新用户注册赠送积分活动 1259516
关于科研通互助平台的介绍 1192311