Fine-Tuning LLMs with Medical Data: Can Safety Be Ensured?

医学 环境卫生
作者
Minkyoung Kim,Yunha Kim,Hee Jun Kang,Hyeram Seo,Heejung Choi,Jiye Han,Gaeun Kee,Seohyun Park,Soyoung Ko,HyoJe Jung,Byeolhee Kim,Tae Joon Jun,Young‐Hak Kim
标识
DOI:10.1056/aics2400390
摘要

Developing large-scale language models (LLMs) for health care requires fine-tuning with health care domain data suitable for downstream tasks. However, fine-tuning LLMs with medical data can expose the training data used during learning to adversarial attacks. This issue is particularly important as medical data contain sensitive and identifiable patient data. The prompt-based adversarial attack approach was employed to assess the potential for medical privacy breaches in LLMs. The success rate of the attack was evaluated by categorizing 71 medical questions into three key metrics. To confirm the exposure of LLMs training data, each case was compared with the original electronic medical record. The security of the model was confirmed to be compromised by the prompt attack method, resulting in a jailbreak (i.e., security breach). The American Standard Code for Information Interchange code encoding method had a success rate of up to 80.8% in disabling the guardrail. The success rate of attacks that caused the model to expose part of the training data was up to 21.8%. These findings underscore the critical need for robust defense strategies to protect patient privacy and maintain the integrity of medical information. Addressing these vulnerabilities is crucial for integrating LLMs into clinical workflows safely, balancing the benefits of advanced artificial intelligence technologies with the need to protect sensitive patient data. (Funded by the Korea Health Industry Development Institute and the Ministry of Health & Welfare, Republic of Korea.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助wjx采纳,获得10
1秒前
华仔应助dafo采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
3秒前
陈祖冰发布了新的文献求助10
3秒前
3秒前
温暖幻桃发布了新的文献求助20
4秒前
白菜发布了新的文献求助10
4秒前
遇上就这样吧应助AZE采纳,获得10
4秒前
懒得起名发布了新的文献求助10
4秒前
Emmalee应助以恒之心采纳,获得10
5秒前
wlsy完成签到,获得积分10
6秒前
东堂完成签到,获得积分10
6秒前
6秒前
大模型应助rivalsdd采纳,获得10
7秒前
bkagyin应助runner采纳,获得10
7秒前
开心超人发布了新的文献求助10
7秒前
小白完成签到,获得积分10
7秒前
leanne完成签到,获得积分20
8秒前
万能图书馆应助小魏采纳,获得10
8秒前
麽一嗷喵发布了新的文献求助10
9秒前
充电宝应助弓長玉王令采纳,获得10
9秒前
Huang2547完成签到,获得积分10
9秒前
9秒前
zho发布了新的文献求助10
9秒前
贾土土发布了新的文献求助10
10秒前
可爱的函函应助vicin采纳,获得10
10秒前
11秒前
王甜甜给王甜甜的求助进行了留言
11秒前
LL完成签到 ,获得积分10
11秒前
linlin发布了新的文献求助10
12秒前
12秒前
想读博的小羊完成签到,获得积分20
13秒前
双景完成签到,获得积分20
13秒前
msk完成签到,获得积分10
13秒前
万能图书馆应助浆糊采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369757
求助须知:如何正确求助?哪些是违规求助? 3867951
关于积分的说明 12059793
捐赠科研通 3510614
什么是DOI,文献DOI怎么找? 1926546
邀请新用户注册赠送积分活动 968488
科研通“疑难数据库(出版商)”最低求助积分说明 867514