已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fine-Tuning LLMs with Medical Data: Can Safety Be Ensured?

医学 环境卫生
作者
Minkyoung Kim,Yunha Kim,Hee Jun Kang,Hyeram Seo,Heejung Choi,Jiye Han,Gaeun Kee,Seohyun Park,Soyoung Ko,HyoJe Jung,Byeolhee Kim,Tae Joon Jun,Young‐Hak Kim
标识
DOI:10.1056/aics2400390
摘要

Developing large-scale language models (LLMs) for health care requires fine-tuning with health care domain data suitable for downstream tasks. However, fine-tuning LLMs with medical data can expose the training data used during learning to adversarial attacks. This issue is particularly important as medical data contain sensitive and identifiable patient data. The prompt-based adversarial attack approach was employed to assess the potential for medical privacy breaches in LLMs. The success rate of the attack was evaluated by categorizing 71 medical questions into three key metrics. To confirm the exposure of LLMs training data, each case was compared with the original electronic medical record. The security of the model was confirmed to be compromised by the prompt attack method, resulting in a jailbreak (i.e., security breach). The American Standard Code for Information Interchange code encoding method had a success rate of up to 80.8% in disabling the guardrail. The success rate of attacks that caused the model to expose part of the training data was up to 21.8%. These findings underscore the critical need for robust defense strategies to protect patient privacy and maintain the integrity of medical information. Addressing these vulnerabilities is crucial for integrating LLMs into clinical workflows safely, balancing the benefits of advanced artificial intelligence technologies with the need to protect sensitive patient data. (Funded by the Korea Health Industry Development Institute and the Ministry of Health & Welfare, Republic of Korea.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
贪玩的谷芹完成签到 ,获得积分10
10秒前
科研通AI5应助xwang采纳,获得10
13秒前
16秒前
JOKER发布了新的文献求助10
22秒前
23秒前
牧谷完成签到 ,获得积分10
29秒前
32秒前
白金之星完成签到 ,获得积分10
34秒前
JOKER完成签到,获得积分10
38秒前
风筝鱼完成签到 ,获得积分10
41秒前
42秒前
46秒前
可爱的函函应助ceicic采纳,获得10
48秒前
过了年我就四岁完成签到,获得积分10
48秒前
67发布了新的文献求助10
51秒前
Q1完成签到,获得积分20
52秒前
传奇3应助WZY采纳,获得10
56秒前
QCL发布了新的文献求助20
1分钟前
1分钟前
feiCheung完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
WZY发布了新的文献求助10
1分钟前
kyrie发布了新的文献求助10
1分钟前
ceicic发布了新的文献求助10
1分钟前
67完成签到,获得积分10
1分钟前
jimmy_bytheway完成签到,获得积分0
1分钟前
xwang发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
洪亮完成签到,获得积分0
1分钟前
1分钟前
周倩倩发布了新的文献求助10
1分钟前
mostspecial完成签到,获得积分10
1分钟前
AAA建材批发原哥完成签到,获得积分10
1分钟前
xwang完成签到,获得积分10
1分钟前
Ava应助周倩倩采纳,获得10
1分钟前
YOLO完成签到 ,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843144
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540379
捐赠科研通 3105997
什么是DOI,文献DOI怎么找? 1710830
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264