DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model

图像分割 计算机科学 医学影像学 计算机视觉 人工智能 图像(数学) 分割 尺度空间分割 扩散 模式识别(心理学) 物理 热力学
作者
Zheyuan Zhang,Lanhong Yao,Bin Wang,Debesh Jha,Görkem Durak,Elif Keleş,Alpay Medetalibeyoğlu,Ulaş Bağcı
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tmi.2024.3519307
摘要

Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications since they potentially enable better generalization performance and avoid overfitting. However, the scarcity of high-quality labeled data always presents significant challenges. This paper proposes a novel approach to address this challenge by developing controllable diffusion models for medical image synthesis, called DiffBoost. We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data that preserve the essential characteristics of the original medical images by incorporating edge information of objects to guide the synthesis process. In our approach, we ensure that the synthesized samples adhere to medically relevant constraints and preserve the underlying structure of imaging data. Due to the random sampling process by the diffusion model, we can generate an arbitrary number of synthetic images with diverse appearances. To validate the effectiveness of our proposed method, we conduct an extensive set of medical image segmentation experiments on multiple datasets, including Ultrasound breast (+13.87%), CT spleen (+0.38%), and MRI prostate (+7.78%), achieving significant improvements over the baseline segmentation methods. The promising results demonstrate the effectiveness of our DiffBoost for medical image segmentation tasks and show the feasibility of introducing a first-ever text-guided diffusion model for general medical image segmentation tasks. With carefully designed ablation experiments, we investigate the influence of various data augmentations, hyper-parameter settings, patch size for generating random merging mask settings, and combined influence with different network architectures. Source code with checkpoints are available at https:// github.com/NUBagciLab/DiffBoost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
道天发布了新的文献求助10
刚刚
KEHUGE完成签到,获得积分10
1秒前
1秒前
羞涩的傲菡给羞涩的傲菡的求助进行了留言
2秒前
For关闭了For文献求助
3秒前
落寞元霜完成签到,获得积分10
3秒前
爆米花应助yimoyafan采纳,获得10
3秒前
FashionBoy应助zhovy采纳,获得10
4秒前
5秒前
5秒前
fhbsdufh发布了新的文献求助10
5秒前
贪玩钢铁侠完成签到,获得积分10
7秒前
7秒前
郭de钢发布了新的文献求助10
7秒前
wqs发布了新的文献求助10
8秒前
苦小厄发布了新的文献求助10
11秒前
苏澄完成签到,获得积分10
11秒前
Kriemhild完成签到,获得积分10
11秒前
11秒前
卷网那个完成签到,获得积分10
13秒前
Hello应助刘晓蕾采纳,获得10
13秒前
Lees发布了新的文献求助100
14秒前
悠悠完成签到,获得积分10
14秒前
过时的小萱关注了科研通微信公众号
15秒前
nandeyijia完成签到,获得积分10
16秒前
香蕉觅云应助加百莉采纳,获得10
17秒前
深情安青应助朴素尔蝶采纳,获得10
18秒前
shubo完成签到,获得积分10
18秒前
19秒前
22秒前
务实的菓完成签到 ,获得积分10
22秒前
左手树发布了新的文献求助10
24秒前
24秒前
24秒前
26秒前
27秒前
NexusExplorer应助wqs采纳,获得10
27秒前
27秒前
情怀应助MOMOMOMO采纳,获得30
29秒前
加百莉发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452409
求助须知:如何正确求助?哪些是违规求助? 3919451
关于积分的说明 12165101
捐赠科研通 3569602
什么是DOI,文献DOI怎么找? 1960317
邀请新用户注册赠送积分活动 999633
科研通“疑难数据库(出版商)”最低求助积分说明 894577