Machine-learning surrogate models for particle insertions and element substitutions

粒子(生态学) 溶剂化 计算机科学 分子 化学 统计物理学 物理 量子力学 海洋学 地质学
作者
Ryosuke Jinnouchi
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:161 (19) 被引量:1
标识
DOI:10.1063/5.0240275
摘要

Two machine-learning-aided thermodynamic integration schemes to compute the chemical potentials of atoms and molecules have been developed and compared. One is the particle insertion method, and the other combines particle insertion with element substitution. In the former method, the species is gradually inserted into the liquid and its chemical potential is computed. In the latter method, after the particle insertion, the inserted species is substituted with another species, and the chemical potential of this new species is computed. In both methods, the thermodynamic integrations are conducted using machine-learned potentials trained on first-principles datasets. The errors of the machine-learned surrogate models are further corrected by performing thermodynamic integrations from the machine-learned potentials to the first-principles potentials, accurately providing the first-principles chemical potentials. These two methods are applied to compute the real potentials of proton, alkali metal cations, and halide anions in water. The applications indicate that these two entirely different thermodynamic pathways yield identical real potentials within statistical error bars, demonstrating that both methods provide reproducible real potentials. The computed real potentials and solvation structures are also in good agreement with past experiments and simulations. These results indicate that machine-learning surrogate models enabling particle insertion and element substitution provide a precise method for determining the chemical potentials of atoms and molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助FJXHXQ采纳,获得10
3秒前
3秒前
含蓄洋葱发布了新的文献求助10
3秒前
蛋蛋1完成签到,获得积分10
3秒前
3秒前
4秒前
隐形曼青应助foxp3采纳,获得10
5秒前
6秒前
Hello应助zyc采纳,获得10
6秒前
6秒前
ardejiang发布了新的文献求助10
7秒前
Sanool完成签到,获得积分10
7秒前
YMUSTC发布了新的文献求助10
7秒前
大个应助momokop采纳,获得10
8秒前
9秒前
MeOH拿桶接发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
Q17完成签到,获得积分10
12秒前
含蓄洋葱完成签到,获得积分10
13秒前
成功发布了新的文献求助10
13秒前
14秒前
任性的傲柏完成签到,获得积分10
14秒前
14秒前
monere发布了新的文献求助10
14秒前
14秒前
15秒前
一个搞不懂晶体学的小牛马完成签到,获得积分10
16秒前
轻松文轩发布了新的文献求助10
16秒前
gaon完成签到,获得积分10
17秒前
吴军霄发布了新的文献求助10
17秒前
虚拟的半梦完成签到,获得积分10
17秒前
18秒前
花痴的寻菱完成签到,获得积分10
18秒前
卑微科研发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
知性的土豆完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787580
求助须知:如何正确求助?哪些是违规求助? 3333171
关于积分的说明 10259745
捐赠科研通 3048682
什么是DOI,文献DOI怎么找? 1673245
邀请新用户注册赠送积分活动 801721
科研通“疑难数据库(出版商)”最低求助积分说明 760338