Noise Analysis of Distributed Acoustic Sensing (DAS) Data in Borehole Installations

检波器 地震计 噪音(视频) 微震 钻孔 分布式声传感 地温梯度 地震学 地质学 遥感 地震噪声 环境噪声级 仪表(计算机编程) 环境科学 声学 计算机科学 光纤 电信 地球物理学 光纤传感器 声音(地理) 物理 岩土工程 地貌学 人工智能 图像(数学) 操作系统
作者
Davide Pecci,Simone Cesca,Peter Niemz,K. L. Pankow,G. Carelli,Francesco Grigoli
出处
期刊:Seismological Research Letters [Seismological Society of America]
标识
DOI:10.1785/0220240292
摘要

Abstract Distributed acoustic sensing (DAS) is a technology that is revolutionizing seismic data acquisition, particularly in borehole installations. Acting as a dense array of receivers, DAS provides high coverage, revealing time-depth patterns that are often hidden in data acquired with traditional seismometers. Its resilience to extreme temperature and pressure conditions, in which standard instrumentation typically fails, makes DAS reliable for microseismic monitoring operations in deep boreholes in geothermal environments. However, DAS faces challenges such as a lower signal-to-noise ratio compared to conventional geophones. DAS requires advanced denoising workflows in environments with high background noise, for example, from anthropogenic activities. A broader understanding and characterization of the noise observed in optical fibers is thus necessary and is still lacking. In this work, we aim to address this gap by analyzing noise data acquired from a fiber-optic cable installed in a monitoring well at the Utah Frontier Observatory for Research in Geothermal Energy Enhanced Geothermal System pilot project site in southcentral Utah, United States. Our proposed workflow combines power spectral density and phase analysis to assess the modulation of noise over time and depth for different frequencies and consequently to differentiate noise originating by anthropogenic sources at the surface from those further away from the industrial site. In addition, our analysis highlights noise components that may be related to instrumental noise from the interrogator, contributing to future noise mitigation strategies. This is further demonstrated through a direct comparison with noise observed by geophones coupled with the optical fiber in the same monitoring well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助舒适路人采纳,获得10
1秒前
bkagyin应助zn315315采纳,获得20
1秒前
Baihuashan完成签到 ,获得积分20
1秒前
沉淀完成签到 ,获得积分10
1秒前
2秒前
整点肠子完成签到,获得积分20
3秒前
3秒前
tonight完成签到 ,获得积分10
3秒前
白菜发布了新的文献求助10
4秒前
英姑应助YUMI采纳,获得10
4秒前
5秒前
xibaluma发布了新的文献求助10
5秒前
6秒前
Ava应助kevindeng采纳,获得20
6秒前
YY完成签到,获得积分10
7秒前
丘比特应助帅帅的女人采纳,获得10
7秒前
8秒前
8秒前
托尔斯泰发布了新的文献求助10
9秒前
十一发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
zhuazhua完成签到 ,获得积分10
12秒前
cjy发布了新的文献求助10
12秒前
搜集达人应助舒适路人采纳,获得10
13秒前
back you up应助xibaluma采纳,获得30
13秒前
a1207732382完成签到,获得积分10
14秒前
科目三应助失眠的水壶采纳,获得10
14秒前
宇少爱学习哟完成签到,获得积分10
14秒前
慕青应助55666采纳,获得10
15秒前
鹅鹅鹅发布了新的文献求助10
15秒前
过客发布了新的文献求助10
16秒前
英勇水杯完成签到,获得积分10
16秒前
zhu完成签到,获得积分10
16秒前
JamesPei应助樊小雾采纳,获得10
17秒前
18秒前
18秒前
lucky完成签到,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786149
求助须知:如何正确求助?哪些是违规求助? 3331690
关于积分的说明 10252167
捐赠科研通 3047090
什么是DOI,文献DOI怎么找? 1672378
邀请新用户注册赠送积分活动 801270
科研通“疑难数据库(出版商)”最低求助积分说明 760110