Generic Image Manipulation Localization through the Lens of Multi-scale Spatial Inconsistence

稳健性(进化) NIST公司 边距(机器学习) 计算机视觉 GSM演进的增强数据速率 计算机科学 背景(考古学) 比例(比率) 人工智能 图像(数学) 空间语境意识 模式识别(心理学) 数据挖掘 机器学习 物理 自然语言处理 量子力学 古生物学 生物化学 化学 生物 基因
作者
Zan Gao,Shenghao Chen,Yangyang Guo,Weili Guan,Jie Nie,An-An Liu
标识
DOI:10.1145/3503161.3548100
摘要

Image manipulation localization is of vital importance to public order protection. One dominant approach is to detect the anomalies in images, i.e., visual artifacts, as the tampered edge clue for aiding manipulation prediction. Nevertheless, we argue that these methods struggle with the modeling of spatial inconsistency within multi-scale, resulting in sub-optimal model performance. To overcome this problem, in this paper, we propose a novel end-to-end method to identify the multi-scale spatial inconsistency for image manipulation localization (abbreviated as MSI) where the multi-scale edge-guided attention stream (MEA) and multi-scale context-aware search stream (MCS) are jointly explored in a unified framework, moreover, multi-scale information is efficiently used. In the former, the edge-attention module is designed to precisely locate the tampered regions based upon multi-scale edge boundary features. In the latter, the context-aware search module is designed to model spatial contextual information within multiple scales. To validate the effectiveness of the proposed method, we conduct extensive experiments on six image manipulation localization datasets including NIST-2016, Columbia, CASIA1.0, COVER, DEF-12K, and IMD2020. The experimental results demonstrate that our proposed method can outperform state-of-the-art methods by a significant margin in terms of average F1 score while maintaining robustness with respect to various attacks. Compared with MVSS-Net (Published in ICCV 2021) on the NIST-2016, CASIA1.0, DEF-12K, and IMD2020 datasets, the improvements in F1 score can reach 6.7%, 9.5%, 5.4%, and 8.4%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽尔风完成签到,获得积分10
3秒前
zcr完成签到,获得积分10
4秒前
5秒前
yuhang发布了新的文献求助10
9秒前
9秒前
16秒前
现代玉米完成签到,获得积分10
18秒前
18秒前
爱你沛沛完成签到 ,获得积分10
19秒前
ORAzzz完成签到,获得积分10
20秒前
刘彤发布了新的文献求助10
20秒前
CipherSage应助坚强依云采纳,获得30
20秒前
qilinghe完成签到,获得积分20
21秒前
欸嘿完成签到,获得积分10
22秒前
zhangyx完成签到 ,获得积分10
22秒前
科研通AI5应助神勇代荷采纳,获得30
22秒前
凶狠的洋葱完成签到,获得积分10
25秒前
25秒前
无心的秋珊完成签到 ,获得积分10
25秒前
chen完成签到,获得积分10
26秒前
liuliu应助11采纳,获得10
28秒前
时尚的紫蓝完成签到,获得积分10
32秒前
大气的小蜜蜂完成签到 ,获得积分10
32秒前
张萌发布了新的文献求助10
33秒前
大气的莆完成签到,获得积分10
34秒前
ash完成签到 ,获得积分10
36秒前
咯咚完成签到 ,获得积分10
36秒前
yanlibiu完成签到,获得积分20
36秒前
didi发布了新的文献求助20
37秒前
42秒前
43秒前
ryze完成签到,获得积分10
43秒前
44秒前
hepotosis完成签到,获得积分10
46秒前
48秒前
48秒前
悬铃木完成签到,获得积分10
48秒前
打打应助哇达西采纳,获得10
50秒前
50秒前
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793299
求助须知:如何正确求助?哪些是违规求助? 3338015
关于积分的说明 10288400
捐赠科研通 3054639
什么是DOI,文献DOI怎么找? 1676091
邀请新用户注册赠送积分活动 804095
科研通“疑难数据库(出版商)”最低求助积分说明 761752