Energy-Efficient Distributed Mobile Crowd Sensing: A Deep Learning Approach

计算机科学 杠杆(统计) 强化学习 卷积神经网络 分布式计算 实时计算 移动设备 深度学习 人工智能 高效能源利用 操作系统 电气工程 工程类
作者
Chi Harold Liu,Zheyu Chen,Yufeng Zhan
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:37 (6): 1262-1276 被引量:97
标识
DOI:10.1109/jsac.2019.2904353
摘要

High-quality data collection is crucial for mobile crowd sensing (MCS) with various applications like smart cities and emergency rescues, where various unmanned mobile terminals (MTs), e.g., driverless cars and unmanned aerial vehicles (UAVs), are equipped with different sensors that aid to collect data. However, they are limited with fixed carrying capacity, and thus, MT's energy resource and sensing range are constrained. It is quite challenging to navigate a group of MTs to move around a target area to maximize their total amount of collected data with the limited energy reserve, while geographical fairness among those point-of-interests (PoIs) should also be maximized. It is even more challenging if fully distributed execution is enforced, where no central control is allowed at the backend. To this end, we propose to leverage emerging deep reinforcement learning (DRL) techniques for directing MT's sensing and movement and to present a novel and highly efficient control algorithm, called energy-efficient distributed MCS (Edics). The proposed neural network integrates convolutional neural network (CNN) for feature extraction and then makes decision under the guidance of multi-agent deep deterministic policy gradient (DDPG) method in a fully distributed manner. We also propose two enhancements into Edics with N-step return and prioritized experienced replay buffer. Finally, we evaluate Edics through extensive simulations and found the appropriate set of hyperparameters in terms of number of CNN hidden layers and neural units for all the fully connected layers. Compared with three commonly used baselines, results have shown its benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dd发布了新的文献求助10
刚刚
刚刚
刚刚
qihuan152应助波波采纳,获得30
刚刚
1秒前
songge完成签到,获得积分10
2秒前
思源应助chelsea采纳,获得10
2秒前
ZhouYW应助欧班长采纳,获得10
2秒前
3秒前
发dasd应助cc采纳,获得10
3秒前
duke发布了新的文献求助200
3秒前
脑洞疼应助稳重的青旋采纳,获得10
4秒前
科研不懂12完成签到,获得积分20
4秒前
熊猫爱豆浆完成签到,获得积分10
4秒前
祥子发布了新的文献求助30
5秒前
好久不见发布了新的文献求助10
5秒前
GBY发布了新的文献求助10
5秒前
打打应助科研通管家采纳,获得30
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科目三应助蝉鸣采纳,获得10
6秒前
xzy998应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
蓝幻雷发布了新的文献求助10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
6秒前
Karhu89完成签到,获得积分0
7秒前
8秒前
8秒前
8秒前
年轻鞋垫完成签到,获得积分10
8秒前
鱼跃完成签到,获得积分10
9秒前
Lucas应助周雨婷采纳,获得10
10秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791817
求助须知:如何正确求助?哪些是违规求助? 3336131
关于积分的说明 10279169
捐赠科研通 3052806
什么是DOI,文献DOI怎么找? 1675333
邀请新用户注册赠送积分活动 803378
科研通“疑难数据库(出版商)”最低求助积分说明 761208