Deep Learned Process Parameterizations Provide Better Representations of Turbulent Heat Fluxes in Hydrologic Models

水准点(测量) 计算机科学 模块化设计 联轴节(管道) 嵌入 过程(计算) 水文模型 航程(航空) 参数化(大气建模) 水循环 人工智能 工程类 物理 地质学 航空航天工程 地理 大地测量学 操作系统 生物 机械工程 辐射传输 量子力学 气候学 生态学
作者
Andrew Bennett,Bart Nijssen
出处
期刊:Water Resources Research [Wiley]
卷期号:57 (5) 被引量:66
标识
DOI:10.1029/2020wr029328
摘要

Abstract Deep learning (DL) methods have shown great promise for accurately predicting hydrologic processes but have not yet reached the complexity of traditional process‐based hydrologic models (PBHM) in terms of representing the entire hydrologic cycle. The ability of PBHMs to simulate the hydrologic cycle makes them useful for a wide range of modeling and simulation tasks, for which DL methods have not yet been adapted. We argue that we can take advantage of each of these approaches by embedding DL methods into PBHMs to represent individual processes. We demonstrate that this is viable by developing DL‐based representations of turbulent heat fluxes and coupling them into the Structure for Unifying Multiple Modeling Alternatives (SUMMA), a modular PBHM modeling framework. We developed two DL parameterizations and integrated them into SUMMA, resulting in a one‐way coupled implementation which relies only on model inputs and a two‐way coupled implementation, which also incorporates SUMMA‐derived model states. Our results demonstrate that the DL parameterizations are able to outperform calibrated standalone SUMMA benchmark simulations. Further we demonstrate that the two‐way coupling can simulate the long‐term latent heat flux better than the standalone benchmark and one‐way coupled configuration. This shows that DL methods can benefit from PBHM information, and the synergy between these modeling approaches is superior to either approach individually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sheliachen完成签到,获得积分20
2秒前
3秒前
SciGPT应助zhouleiwang采纳,获得10
3秒前
杪123完成签到,获得积分10
4秒前
小陈完成签到,获得积分10
4秒前
4秒前
滴滴滴发布了新的文献求助30
5秒前
meng发布了新的文献求助10
6秒前
Ava应助稳重书双采纳,获得10
8秒前
平常的忆文完成签到,获得积分10
8秒前
10秒前
10秒前
老迟到的丹雪完成签到 ,获得积分10
12秒前
Try完成签到 ,获得积分10
13秒前
16秒前
16秒前
滴滴滴完成签到,获得积分10
17秒前
whyme完成签到,获得积分10
19秒前
风中的尔曼完成签到,获得积分20
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
99发布了新的文献求助10
20秒前
20秒前
情怀应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得30
20秒前
无花果应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
21秒前
无私的小松鼠完成签到 ,获得积分10
21秒前
所所应助科研通管家采纳,获得10
21秒前
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
vv完成签到 ,获得积分10
21秒前
21秒前
Gigi发布了新的文献求助10
22秒前
Ava应助兜兜采纳,获得10
23秒前
xym完成签到,获得积分20
23秒前
蒿俊行发布了新的文献求助10
23秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Superiority of opioid free anesthesia with regional block over opioid anesthesia with regional block in the quality of recovery after retroperitoneiscopic renal surgery: a randomized controlled trial 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826985
求助须知:如何正确求助?哪些是违规求助? 3369244
关于积分的说明 10455158
捐赠科研通 3088870
什么是DOI,文献DOI怎么找? 1699521
邀请新用户注册赠送积分活动 817361
科研通“疑难数据库(出版商)”最低求助积分说明 770188