亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-learning for few-shot bearing fault diagnosis under complex working conditions

计算机科学 断层(地质) 水准点(测量) 初始化 人工智能 过程(计算) 机器学习 数据挖掘 方位(导航) 地质学 地震学 地理 程序设计语言 大地测量学 操作系统
作者
Chuanjiang Li,Shaobo Li,Ansi Zhang,Qiang He,Zihao Liao,Jianjun Hu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:439: 197-211 被引量:180
标识
DOI:10.1016/j.neucom.2021.01.099
摘要

Deep learning-based bearing fault diagnosis has been systematically studied in recent years. However, the success of most of these methods relies heavily on massive labeled data, which is not always available in real production environments. Training a robust bearing fault diagnosis model with limited data and working well under complex working conditions remains a challenge. In this paper, a novel meta-learning fault diagnosis method (MLFD) based on model-agnostic meta-learning is proposed to address this issue. The raw signals of different working conditions are first converted to time–frequency images and then randomly sampled to form tasks for MLFD according to the protocol of meta-learning. The MLFD model acquires prior knowledge by optimizing initialization parameters based on multiple fault classification tasks of known working conditions during the meta-training process, and achieves fast and accurate few-shot bearing fault diagnosis under unseen working conditions by leveraging the learned knowledge. To comprehensively evaluate the performance of our method, a series of experiments were conducted to simulate different industrial scenarios based on the Case Western Reserve University Bearing Fault Benchmark, and the results demonstrate the superiority of MLFD in solving the few-shot fault classification problem under complex working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月5114完成签到 ,获得积分10
2秒前
Akim应助天真咖啡豆采纳,获得10
6秒前
xun完成签到,获得积分20
17秒前
wanci应助泥巴采纳,获得10
17秒前
25秒前
28秒前
29秒前
hyhyhyhy发布了新的文献求助10
31秒前
31秒前
juile发布了新的文献求助10
33秒前
柳行天完成签到 ,获得积分10
37秒前
43秒前
赘婿应助天真咖啡豆采纳,获得10
44秒前
55秒前
布鲁爱思发布了新的文献求助10
1分钟前
1分钟前
天真咖啡豆完成签到,获得积分10
1分钟前
深情安青应助布鲁爱思采纳,获得10
1分钟前
1分钟前
笨笨代曼完成签到,获得积分10
1分钟前
jnfy完成签到,获得积分10
1分钟前
1分钟前
樱桃猴子应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
www发布了新的文献求助10
1分钟前
1分钟前
Jj7完成签到,获得积分10
1分钟前
Hello应助天真咖啡豆采纳,获得10
1分钟前
2分钟前
2分钟前
天天快乐应助无聊又夏采纳,获得10
2分钟前
orixero应助jingchengke采纳,获得10
2分钟前
www发布了新的文献求助10
2分钟前
怕孤独的战斗机完成签到,获得积分10
2分钟前
2分钟前
布鲁爱思发布了新的文献求助10
2分钟前
2分钟前
等风来完成签到 ,获得积分10
2分钟前
无聊又夏发布了新的文献求助10
2分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346429
关于积分的说明 10329297
捐赠科研通 3062969
什么是DOI,文献DOI怎么找? 1681276
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763713