Integrating genomic features for non-invasive early lung cancer detection

肺癌 肿瘤科 医学 内科学 体细胞 阶段(地层学) 肺癌筛查 癌症 个性化医疗 生物 生物信息学 基因 遗传学 古生物学
作者
Jacob J. Chabon,Emily G. Hamilton,David M. Kurtz,Mohammad Shahrokh Esfahani,Everett J. Moding,Henning Stehr,Joseph G. Schroers‐Martin,Barzin Y. Nabet,Binbin Chen,Aadel A. Chaudhuri,Chih Long Liu,Angela BY Hui,Michael C. Jin,Tej D. Azad,Diego Almanza,Young-Jun Jeon,Monica Nesselbush,Lyron Co Ting Keh,Rene F. Bonilla,Christopher H. Yoo
出处
期刊:Nature [Nature Portfolio]
卷期号:580 (7802): 245-251 被引量:526
标识
DOI:10.1038/s41586-020-2140-0
摘要

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ‘lung cancer likelihood in plasma’ (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies. Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XXXX关注了科研通微信公众号
1秒前
跳跳虎发布了新的文献求助10
1秒前
林一楠关注了科研通微信公众号
2秒前
2秒前
50009797完成签到,获得积分10
2秒前
千万雷同完成签到,获得积分10
3秒前
叮叮车发布了新的文献求助10
3秒前
科目三应助doudou采纳,获得10
3秒前
3秒前
csy发布了新的文献求助10
5秒前
酷波er应助牛牛眉目采纳,获得10
5秒前
顾矜应助万叶采纳,获得10
6秒前
7秒前
田様应助等待的谷波采纳,获得10
7秒前
早晚会疯完成签到,获得积分10
8秒前
小蘑菇应助青菜采纳,获得30
8秒前
张文静发布了新的文献求助10
10秒前
cyy发布了新的文献求助10
11秒前
香菜味钠片完成签到,获得积分10
12秒前
12秒前
ccchengzi完成签到,获得积分10
13秒前
13秒前
yun完成签到 ,获得积分10
14秒前
14秒前
17秒前
林一楠发布了新的文献求助10
17秒前
17秒前
17秒前
储婉怡完成签到,获得积分20
18秒前
幽默从安发布了新的文献求助10
19秒前
帝蒼完成签到,获得积分10
20秒前
高路发布了新的文献求助10
20秒前
wei发布了新的文献求助10
22秒前
Fqdgest完成签到,获得积分10
23秒前
24秒前
叮叮车完成签到,获得积分10
24秒前
完美世界应助明杰采纳,获得10
24秒前
善学以致用应助牛牛眉目采纳,获得10
26秒前
希望天下0贩的0应助Cynicism采纳,获得10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388