Integrating genomic features for non-invasive early lung cancer detection

肺癌 肿瘤科 医学 内科学 体细胞 阶段(地层学) 肺癌筛查 癌症 个性化医疗 生物 生物信息学 基因 遗传学 古生物学
作者
Jacob J. Chabon,Emily G. Hamilton,David M. Kurtz,Mohammad Shahrokh Esfahani,Everett J. Moding,Henning Stehr,Joseph G. Schroers‐Martin,Barzin Y. Nabet,Binbin Chen,Aadel A. Chaudhuri,Chih Long Liu,Angela BY Hui,Michael C. Jin,Tej D. Azad,Diego Almanza,Young-Jun Jeon,Monica Nesselbush,Lyron Co Ting Keh,Rene F. Bonilla,Christopher H. Yoo
出处
期刊:Nature [Nature Portfolio]
卷期号:580 (7802): 245-251 被引量:516
标识
DOI:10.1038/s41586-020-2140-0
摘要

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ‘lung cancer likelihood in plasma’ (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies. Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学医的小胖子完成签到 ,获得积分10
刚刚
达达完成签到,获得积分10
1秒前
3秒前
科目三应助阳光盼山采纳,获得10
3秒前
3秒前
5秒前
科研通AI5应助龙弟弟采纳,获得10
5秒前
6秒前
丘比特应助苏qj采纳,获得10
6秒前
完美的四娘完成签到,获得积分10
6秒前
英姑应助王一采纳,获得10
6秒前
禹卓完成签到,获得积分10
6秒前
cdercder应助认真子默采纳,获得10
7秒前
7秒前
zxxx发布了新的文献求助10
8秒前
yang完成签到,获得积分10
8秒前
勿明应助WEI采纳,获得30
8秒前
852应助六月采纳,获得10
8秒前
Nobody完成签到,获得积分10
9秒前
11秒前
CipherSage应助WTT采纳,获得10
12秒前
13秒前
13秒前
yang发布了新的文献求助10
13秒前
慕青应助Bear采纳,获得10
14秒前
14秒前
14秒前
gyf完成签到,获得积分20
16秒前
16秒前
16秒前
Jasper应助段皖顺采纳,获得10
18秒前
咿呀咿呀哟完成签到,获得积分20
18秒前
科研通AI2S应助11采纳,获得10
18秒前
小二郎应助ZY采纳,获得10
19秒前
缓慢听枫发布了新的文献求助10
19秒前
龙弟弟发布了新的文献求助10
20秒前
坚强白凝发布了新的文献求助10
20秒前
ying完成签到 ,获得积分10
21秒前
21秒前
冷艳大侠完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787451
求助须知:如何正确求助?哪些是违规求助? 3333090
关于积分的说明 10259068
捐赠科研通 3048483
什么是DOI,文献DOI怎么找? 1673134
邀请新用户注册赠送积分活动 801680
科研通“疑难数据库(出版商)”最低求助积分说明 760308