亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI

卷积神经网络 人工智能 计算机科学 学习迁移 深度学习 对比度(视觉) 可视化 乳房磁振造影 集合(抽象数据类型) 接收机工作特性 边距(机器学习) 模式识别(心理学) 机器学习 乳腺摄影术 乳腺癌 医学 内科学 癌症 程序设计语言
作者
Zachary Papanastasopoulos,Ravi K. Samala,Heang Ping Chan,Lubomir M. Hadjiiski,Chintana Paramagul,Mark A. Helvie,Colleen H. Neal
出处
期刊:Medical Imaging 2020: Computer-Aided Diagnosis 被引量:35
标识
DOI:10.1117/12.2549298
摘要

Deep-learning convolutional neural networks (DCNNs) are the most commonly used approach in medical image analysis tasks at present; however, they have largely been used as black-box predictors, lacking explanation for the underlying reasons. Explainable artificial intelligence (XAI) is an emerging subfield of AI seeking to understand how models make their decisions. In this work, we applied XAI visualization to gain an insight into the features learned by a DCNN trained to classify estrogen receptor status (ER+ vs ER-) based on dynamic contrast-enhanced magnetic resonance imaging (DCEMRI) of the breast. Our data set contained 1395 ER+ regions-of-interest (ROIs) and 729 ER- ROIs from 148 patients, each with a pre-contrast scan and a minimum of two post-contrast scans. We developed a novel transfer-trained dual-domain DCNN architecture derived from the AlexNet model trained on ImageNet data that received the spatial (across the volume) and dynamic (across the acquisition sequence) components of each DCE-MRI ROI as input. The network’s performance was evaluated with the area under the receiver operating characteristic curve (AUC) from leave-one-case-out crossvalidation. To visualize the DCNN learning, we applied XAI techniques, including the Integrated Gradients attribution method and the SmoothGrad noise reduction algorithm, to the ROIs from the training set. We observed that our DCNN learned relevant features from the spatial and dynamic domains, but there were differences in the contributing features from the two domains. We also visualized DCNN learning from irrelevant features resulting from pre-processing artifacts. These observations motivate new approaches to pre-processing our data and training our DCNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
胡杉完成签到,获得积分10
33秒前
共享精神应助科研通管家采纳,获得10
37秒前
脑洞疼应助科研通管家采纳,获得10
37秒前
37秒前
scm应助科研通管家采纳,获得30
37秒前
天天快乐应助胡杉采纳,获得10
39秒前
ldjldj_2004完成签到 ,获得积分10
44秒前
58秒前
1分钟前
Nan发布了新的文献求助10
1分钟前
科目三应助Dr_an采纳,获得20
1分钟前
1分钟前
poolgreen发布了新的文献求助10
1分钟前
躺赢完成签到 ,获得积分10
1分钟前
1分钟前
Dr_an发布了新的文献求助20
1分钟前
宅宅完成签到 ,获得积分10
1分钟前
大宝发布了新的文献求助10
1分钟前
1分钟前
Dr_an完成签到,获得积分10
2分钟前
zhaoty完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
scm应助科研通管家采纳,获得30
2分钟前
Zy完成签到,获得积分10
2分钟前
草木完成签到,获得积分10
3分钟前
3分钟前
幻梦如歌完成签到,获得积分0
3分钟前
焦糖完成签到,获得积分10
3分钟前
荀煜祺完成签到,获得积分10
3分钟前
4分钟前
4分钟前
isaac发布了新的文献求助10
4分钟前
widesky777完成签到 ,获得积分0
4分钟前
4分钟前
CodeCraft应助isaac采纳,获得10
4分钟前
scm应助科研通管家采纳,获得30
4分钟前
4分钟前
Lucky发布了新的文献求助10
4分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827283
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251